Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cancers (Basel) ; 16(4)2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38398126

RÉSUMÉ

The aim of this study was to determine how TERTp mutations impact glioblastoma prognosis. MATERIALS AND METHODS: TERTp mutations were assessed in a retrospective cohort of 258 uniformly treated glioblastoma patients. RNA-sequencing and whole exome sequencing results were available in a subset of patients. RESULTS: Overall, there were no differences in outcomes between patients with mutated TERTp-wt or TERTp. However, we found significant differences according to the type of TERTp mutation. Progression-free survival (mPFS) was 9.1 months for those with the C250T mutation and 7 months for those with either the C228T mutation or TERTp-wt (p = 0.016). Overall survival (mOS) was 21.9 and 15 months, respectively (p = 0.026). This differential effect was more pronounced in patients with MGMTp methylation (mPFS: p = 0.008; mOS: p = 0.021). Multivariate analysis identified the C250T mutation as an independent prognostic factor for longer mOS (HR 0.69; p = 0.044). We found no differences according to TERTp mutation status in molecular alterations common in glioblastoma, nor in copy number variants in genes related to alternative lengthening of telomeres. Nevertheless, in the gene enrichment analysis adjusted for MGMTp methylation status, some Reactome gene sets were differentially enriched, suggesting that the C250T mutation may exert a lesser effect on telomeres or chromosomes. CONCLUSIONS: In our series, patients exhibiting the C250T mutation had a more favorable prognosis compared to those with either TERPp-wt or TERTp C228T mutations. Additionally, our findings suggest a reduced involvement of the C250T mutation in the underlying biological mechanisms related to telomeres.

2.
Sci Rep ; 12(1): 14439, 2022 08 24.
Article de Anglais | MEDLINE | ID: mdl-36002559

RÉSUMÉ

RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.


Sujet(s)
Glioblastome , Gliome , Carcinogenèse , Fusion de gènes , Glioblastome/anatomopathologie , Gliome/génétique , Humains , Protéines associées aux microtubules/génétique , Protéines de fusion oncogènes/génétique , RNA-Seq
3.
Mol Cancer Res ; 20(7): 1108-1121, 2022 07 06.
Article de Anglais | MEDLINE | ID: mdl-35348729

RÉSUMÉ

In patients with trastuzumab-resistant HER2-positive breast cancer, the combination of everolimus (mTORC1 inhibitor) with trastuzumab failed to show a clinically significant benefit. However, the combination of mTOR inhibition and the antibody-drug conjugate (ADC) trastuzumab-emtansine (T-DM1) remains unexplored. We tested T-DM1 plus everolimus in a broad panel of HER2-positive breast cancer cell lines. The combination was superior to T-DM1 alone in four cell lines (HCC1954, SKBR3, EFM192A, and MDA-MB-36) and in two cultures from primary tumor cells derived from HER2-positive patient-derived xenografts (PDX), but not in BT474 cells. In the trastuzumab-resistant HCC1954 cell line, we characterized the effects of the combination using TAK-228 (mTORC1 and -2 inhibitor) and knockdown of the different mTOR complex components. T-DM1 did not affect mTOR downstream signaling nor induct autophagy. Importantly, mTOR inhibition increased intracellular T-DM1 levels, leading to increased lysosomal accumulation of the compound. The increased efficacy of mTOR inhibition plus T-DM1 was abrogated by lysosome inhibitors (chloroquine and bafilomycin A1). Our experiments suggest that BT474 are less sensitive to T-DM1 due to lack of optimal lysosomal processing and intrinsic resistance to the DM1 moiety. Finally, we performed several in vivo experiments that corroborated the superior activity of T-DM1 and everolimus in HCC1954 and PDX-derived mouse models. In summary, everolimus in combination with T-DM1 showed strong antitumor effects in HER2-positive breast cancer, both in vitro and in vivo. This effect might be related, at least partially, to mTOR-dependent lysosomal processing of T-DM1, a finding that might apply to other ADCs that require lysosomal processing. IMPLICATIONS: Inhibition of mTOR increases the antitumor activity of T-DM1, supporting that the combination of mTOR inhibitors and antibody-drug conjugates warrants clinical evaluation in patients with HER2-positive breast cancer.


Sujet(s)
Tumeurs du sein , Immunoconjugués , Ado-trastuzumab emtansine , Animaux , Anticorps monoclonaux humanisés , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Lignée cellulaire tumorale , Évérolimus/pharmacologie , Femelle , Humains , Immunoconjugués/pharmacologie , Complexe-1 cible mécanistique de la rapamycine , Souris , Récepteur ErbB-2/métabolisme , Sérine-thréonine kinases TOR , Trastuzumab/pharmacologie , Tests d'activité antitumorale sur modèle de xénogreffe
4.
Clin Cancer Res ; 27(18): 5096-5108, 2021 09 15.
Article de Anglais | MEDLINE | ID: mdl-34385295

RÉSUMÉ

PURPOSE: To characterize expression of neuregulin-1 (NRG1), an HER3 ligand, in HER2-positive breast cancer and its relation with the efficacy of trastuzumab with or without pertuzumab. EXPERIMENTAL DESIGN: Characterization of NRG1 expression in tumor cell lines, in tumor specimens, and in cancer-associated fibroblasts (CAFs). Patient-derived CAFs were used to investigate NRG1 impact on the activity of trastuzumab with or without pertuzumab in HER2-positive breast cancer cells. The relationship between NRG1 expression and pathologic response to anti-HER2-based neoadjuvant therapy was assessed in a retrospective patient cohort and in the NeoSphere trial. RESULTS: NRG1 was expressed in HER2-positive breast cancer-derived fibroblasts at significantly higher levels than in cancer cells. NRG1 and the conditioned media (CM) from CAFs phosphorylated HER3 and AKT in cancer cells and mediated trastuzumab resistance. Stable genetic depletion of NRG1 from CAFs overcame trastuzumab resistance. Pertuzumab effectively suppressed trastuzumab resistance mediated by either NRG1 or CAF's CM. NRG1 engaged an epithelial-to-mesenchymal transition that was prevented by trastuzumab and pertuzumab. In clinical samples, stromal and/or tumor cell expression of NRG1 determined by immunohistochemistry was uncommon (13.2%) yet significantly linked with residual disease following trastuzumab-based neoadjuvant therapy. In the NeoSphere trial, the magnitude of the difference of pathologic complete response rates favoring the pertuzumab arm was higher in the NRG1-high group. CONCLUSIONS: CAF-derived NRG1 mediates trastuzumab resistance through HER3/AKT, which might be reverted by pertuzumab. In patients with HER2-positive breast cancer, high expression of NRG1 was associated to poor response to trastuzumab, but not in combination with pertuzumab.


Sujet(s)
Anticorps monoclonaux humanisés/usage thérapeutique , Antinéoplasiques immunologiques/usage thérapeutique , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Tumeurs du sein/traitement médicamenteux , Fibroblastes/métabolisme , Neuréguline-1/biosynthèse , Trastuzumab/usage thérapeutique , Tumeurs du sein/composition chimique , Évaluation préclinique de médicament , Femelle , Humains , Récepteur ErbB-2/analyse , Études rétrospectives , Résultat thérapeutique , Cellules cancéreuses en culture
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...