Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Neurosci ; 27(1): 34-47, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37996528

RÉSUMÉ

The mRNA transcript of the human STMN2 gene, encoding for stathmin-2 protein (also called SCG10), is profoundly impacted by TAR DNA-binding protein 43 (TDP-43) loss of function. The latter is a hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Using a combination of approaches, including transient antisense oligonucleotide-mediated suppression, sustained shRNA-induced depletion in aging mice, and germline deletion, we show that stathmin-2 has an important role in the establishment and maintenance of neurofilament-dependent axoplasmic organization that is critical for preserving the caliber and conduction velocity of myelinated large-diameter axons. Persistent stathmin-2 loss in adult mice results in pathologies found in ALS, including reduced interneurofilament spacing, axonal caliber collapse that drives tearing within outer myelin layers, diminished conduction velocity, progressive motor and sensory deficits, and muscle denervation. These findings reinforce restoration of stathmin-2 as an attractive therapeutic approach for ALS and other TDP-43-dependent neurodegenerative diseases.


Sujet(s)
Sclérose latérale amyotrophique , Animaux , Souris , Sclérose latérale amyotrophique/métabolisme , Axones/physiologie , Dénervation , Protéines de liaison à l'ADN/génétique , Filaments intermédiaires/métabolisme , Filaments intermédiaires/anatomopathologie , Motoneurones/métabolisme , Stathmine/génétique , Stathmine/métabolisme
2.
Science ; 379(6637): 1140-1149, 2023 03 17.
Article de Anglais | MEDLINE | ID: mdl-36927019

RÉSUMÉ

Loss of nuclear TDP-43 is a hallmark of neurodegeneration in TDP-43 proteinopathies, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). TDP-43 mislocalization results in cryptic splicing and polyadenylation of pre-messenger RNAs (pre-mRNAs) encoding stathmin-2 (also known as SCG10), a protein that is required for axonal regeneration. We found that TDP-43 binding to a GU-rich region sterically blocked recognition of the cryptic 3' splice site in STMN2 pre-mRNA. Targeting dCasRx or antisense oligonucleotides (ASOs) suppressed cryptic splicing, which restored axonal regeneration and stathmin-2-dependent lysosome trafficking in TDP-43-deficient human motor neurons. In mice that were gene-edited to contain human STMN2 cryptic splice-polyadenylation sequences, ASO injection into cerebral spinal fluid successfully corrected Stmn2 pre-mRNA misprocessing and restored stathmin-2 expression levels independently of TDP-43 binding.


Sujet(s)
Protéines de liaison à l'ADN , Édition de gène , Polyadénylation , Épissage des ARN , Stathmine , Protéinopathies TDP-43 , Animaux , Humains , Souris , Protéines de liaison à l'ADN/métabolisme , Précurseurs des ARN/génétique , Précurseurs des ARN/métabolisme , Stathmine/génétique , Stathmine/métabolisme , Protéinopathies TDP-43/génétique , Protéinopathies TDP-43/thérapie , Sites d'épissage d'ARN , Oligonucléotides antisens/génétique , Excroissance neuronale
3.
Neuron ; 94(1): 48-57.e4, 2017 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-28384474

RÉSUMÉ

Onset of neurodegenerative disorders, including Huntington's disease, is strongly influenced by aging. Hallmarks of aged cells include compromised nuclear envelope integrity, impaired nucleocytoplasmic transport, and accumulation of DNA double-strand breaks. We show that mutant huntingtin markedly accelerates all of these cellular phenotypes in a dose- and age-dependent manner in cortex and striatum of mice. Huntingtin-linked polyglutamine initially accumulates in nuclei, leading to disruption of nuclear envelope architecture, partial sequestration of factors essential for nucleocytoplasmic transport (Gle1 and RanGAP1), and intranuclear accumulation of mRNA. In aged mice, accumulation of RanGAP1 together with polyglutamine is shifted to perinuclear and cytoplasmic areas. Consistent with findings in mice, marked alterations in nuclear envelope morphology, abnormal localization of RanGAP1, and nuclear accumulation of mRNA were found in cortex of Huntington's disease patients. Overall, our findings identify polyglutamine-dependent inhibition of nucleocytoplasmic transport and alteration of nuclear integrity as a central component of Huntington's disease.


Sujet(s)
Transport nucléaire actif , Vieillissement/métabolisme , Cortex cérébral/métabolisme , Protéine huntingtine/métabolisme , Néostriatum/métabolisme , Enveloppe nucléaire/métabolisme , Peptides/métabolisme , Adulte , Sujet âgé de 80 ans ou plus , Animaux , Études cas-témoins , Noyau de la cellule , Femelle , Protéines d'activation de la GTPase/métabolisme , Humains , Mâle , Souris , Adulte d'âge moyen , Mutation , Transporteurs nucléocytoplasmiques/métabolisme , ARN messager/métabolisme , Jeune adulte
4.
Nucleic Acid Ther ; 24(3): 199-209, 2014 Jun.
Article de Anglais | MEDLINE | ID: mdl-24694346

RÉSUMÉ

Mutant huntingtin (HTT) protein is the cause of Huntington's disease (HD), an incurable neurological disorder. Almost all patients are heterozygous for mutant HTT and approaches that reduce levels of mutant HTT while leaving expression of wild-type HTT intact might be ideal options for therapeutic development. We have developed several allele-selective strategies for silencing HTT, including single-stranded silencing RNAs (ss-siRNAs). ss-siRNAs are oligonucleotides containing chemical modifications that permit action through the RNA interference (RNAi) pathway. Modified ss-siRNAs chosen to test the effects of varying oligomer length, lipid modification, the introduction of mismatched bases, and variation of chemical modification. We find that several modified ss-siRNA are potent and allele-selective inhibitors of HTT expression. An ss-siRNA with three mismatched bases relative to the CAG repeat was an allele-selective inhibitor of HTT expression in the HdhQ175 mouse model. Multiple allele-selective ss-siRNAs provide a wide platform of modifications to draw on for further optimization and therapeutic development. Our data provide insights into how ss-siRNAs can be modified to improve their properties and facilitate the discovery of the lead compounds necessary for further development.


Sujet(s)
Allèles , Encéphale/métabolisme , Maladie de Huntington/génétique , Protéines de tissu nerveux/génétique , ARN messager/génétique , Petit ARN interférent/génétique , Animaux , Séquence nucléotidique , Encéphale/anatomopathologie , Lignée cellulaire , Modèles animaux de maladie humaine , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Régulation de l'expression des gènes , Humains , Protéine huntingtine , Maladie de Huntington/métabolisme , Maladie de Huntington/anatomopathologie , Injections ventriculaires , Lipides/composition chimique , Souris , Données de séquences moléculaires , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines de tissu nerveux/métabolisme , Interférence par ARN , ARN messager/antagonistes et inhibiteurs , ARN messager/métabolisme , Petit ARN interférent/synthèse chimique , Petit ARN interférent/métabolisme , Relation structure-activité
5.
Proc Natl Acad Sci U S A ; 110(47): E4530-9, 2013 Nov 19.
Article de Anglais | MEDLINE | ID: mdl-24170860

RÉSUMÉ

Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions.


Sujet(s)
Sclérose latérale amyotrophique/traitement médicamenteux , Expansion de séquence répétée de l'ADN/génétique , Dégénérescence lobaire frontotemporale/traitement médicamenteux , Thérapie génétique/méthodes , Oligonucléotides antisens/pharmacologie , Protéines/génétique , Sclérose latérale amyotrophique/génétique , Animaux , Technique de Southern , Protéine C9orf72 , Système nerveux central/cytologie , Système nerveux central/métabolisme , Amorces ADN/génétique , Fibroblastes/métabolisme , Dégénérescence lobaire frontotemporale/génétique , Génotype , Hybridation fluorescente in situ , Souris , Oligonucléotides antisens/administration et posologie , Oligonucléotides antisens/génétique , Oligonucléotides antisens/usage thérapeutique , Réaction de polymérisation en chaine en temps réel , Analyse de séquence d'ARN
6.
Neuron ; 74(6): 1031-44, 2012 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-22726834

RÉSUMÉ

The primary cause of Huntington's disease (HD) is expression of huntingtin with a polyglutamine expansion. Despite an absence of consensus on the mechanism(s) of toxicity, diminishing the synthesis of mutant huntingtin will abate toxicity if delivered to the key affected cells. With antisense oligonucleotides (ASOs) that catalyze RNase H-mediated degradation of huntingtin mRNA, we demonstrate that transient infusion into the cerebrospinal fluid of symptomatic HD mouse models not only delays disease progression but mediates a sustained reversal of disease phenotype that persists longer than the huntingtin knockdown. Reduction of wild-type huntingtin, along with mutant huntingtin, produces the same sustained disease reversal. Similar ASO infusion into nonhuman primates is shown to effectively lower huntingtin in many brain regions targeted by HD pathology. Rather than requiring continuous treatment, our findings establish a therapeutic strategy for sustained HD disease reversal produced by transient ASO-mediated diminution of huntingtin synthesis.


Sujet(s)
Maladie de Huntington/thérapie , Protéines de tissu nerveux/antagonistes et inhibiteurs , Protéines nucléaires/antagonistes et inhibiteurs , Oligodésoxyribonucléotides antisens/usage thérapeutique , Animaux , Corps strié/métabolisme , Corps strié/anatomopathologie , Modèles animaux de maladie humaine , Évolution de la maladie , Protéine huntingtine , Maladie de Huntington/génétique , Maladie de Huntington/anatomopathologie , Perfusions spinales , Macaca mulatta , Souris , Protéines de tissu nerveux/biosynthèse , Protéines de tissu nerveux/génétique , Neurones/métabolisme , Neurones/anatomopathologie , Protéines nucléaires/biosynthèse , Protéines nucléaires/génétique , Oligodésoxyribonucléotides antisens/administration et posologie , Temps , Résultat thérapeutique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE