Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Appl Physiol (1985) ; 137(1): 85-98, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38841756

RÉSUMÉ

Similar to nonamputees, female athletes with unilateral transtibial amputation (TTA) using running-specific leg prostheses (RSPs) may have worse running economy and higher rates of running-related injury than male athletes. Optimizing RSP configuration for female athletes could improve running economy and minimize biomechanical asymmetry, which has been associated with running-related injury. Nine females with a TTA ran at 2.5 m/s while we measured metabolic rates and ground reaction forces. Subjects used an RSP with a manufacturer-recommended stiffness category, one category less stiff and two categories less stiff than recommended. Use of an RSP two categories less stiff resulted in 3.0% lower net metabolic power (P = 0.04), 7.8% lower affected leg stiffness (P = 6.01 × 10-4), increased contact time asymmetry (P = 0.04), and decreased stance average vertical ground reaction force asymmetry (P = 0.04) compared with a recommended stiffness category RSP. Lower RSP stiffness (kN/m) values were associated with lower net metabolic power (P = 0.02), lower affected leg stiffness (P = 1.36 × 10-4), longer affected leg contact time (P = 1.46 × 10-4), and similar affected leg peak and stance-average vertical ground reaction force compared with higher RSP stiffness values. Subjects then used the RSP stiffness category that elicited the lowest net metabolic power with 100 g, 200 g, and 300 g added distally. We found no significant effects of added mass on net metabolic power, biomechanics, or asymmetry. These results suggest that female runners with a TTA could decrease metabolic power during running while minimizing biomechanical asymmetries, which have been associated with running-related injury, by using an RSP two categories less stiff than manufacturer recommended.NEW & NOTEWORTHY Females with unilateral transtibial amputation can improve running performance through reductions in net metabolic power by using a running-specific prosthesis (RSP) that is less stiff than manufacturer-recommended. Lower RSP stiffness values are associated with greater leg stiffness and contact time asymmetry, and lower stance-average vertical ground reaction force asymmetry. However, we found that adding mass to the RSP did not affect net metabolic power and stance-phase biomechanical asymmetries during running.


Sujet(s)
Amputation chirurgicale , Membres artificiels , Jambe , Course à pied , Humains , Femelle , Course à pied/physiologie , Adulte , Phénomènes biomécaniques/physiologie , Jambe/physiologie , Amputés , Jeune adulte , Conception de prothèse , Athlètes , Adulte d'âge moyen , Métabolisme énergétique/physiologie
2.
Front Rehabil Sci ; 3: 820285, 2022.
Article de Anglais | MEDLINE | ID: mdl-36188980

RÉSUMÉ

People with lower limb impairment can participate in activities such as running with the use of a passive-dynamic ankle-foot orthosis (PD-AFO). Specifically, the Intrepid Dynamic Exoskeletal Orthosis (IDEO) is a PD-AFO design that includes a carbon-fiber strut, which attaches posteriorly to a custom-fabricated tibial cuff and foot plate and acts in parallel with the impaired biological ankle joint to control sagittal and mediolateral motion, while allowing elastic energy storage and return during the stance phase of running. The strut stiffness affects the extent to which the orthosis keeps the impaired biological ankle in a neutral position by controling sagittal and mediolateral motion. The struts are currently manufactured to a thickness that corresponds with one of five stiffness categories (1 = least stiff, 5 = most stiff) and are prescribed to patients based on their body mass and activity level. However, the stiffness values of IDEO carbon-fiber struts have not been systematically determined, and these values can inform dynamic function and biomimetic PD-AFO prescription and design. The PD-AFO strut primarily deflects in the anterior direction (ankle dorsiflexion), and resists deflection in the posterior direction (ankle plantarflexion) during the stance phase of running. Thus, we constructed a custom apparatus and measured strut stiffness for 0.18 radians (10°) of anterior deflection and 0.09 radians (5°) of posterior deflection. We measured the applied moment and strut deflection to compute angular stiffness, the quotient of moment and angle. The strut moment-angle curves for anterior and posterior deflection were well characterized by a linear relationship. The strut stiffness values for categories 1-5 at 0.18 radians (10°) of anterior deflection were 0.73-1.74 kN·m/rad and at 0.09 radians (5°) of posterior deflection were 0.86-2.73 kN·m/rad. Since a PD-AFO strut acts in parallel with the impaired biological ankle, the strut and impaired biological ankle angular stiffness sum to equal total stiffness. Thus, strut stiffness directly affects total ankle joint stiffness, which in turn affects ankle motion and energy storage and return during running. Future research is planned to better understand how use of a running-specific PD-AFO with different strut stiffness affects the biomechanics and metabolic costs of running in people with lower limb impairment.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE