Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 68
Filtrer
1.
Oncogenesis ; 13(1): 4, 2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-38191593

RÉSUMÉ

The essential G1-cyclin, CCND1, is frequently overexpressed in cancer, contributing to tumorigenesis by driving cell-cycle progression. D-type cyclins are rate-limiting regulators of G1-S progression in mammalian cells via their ability to bind and activate CDK4 and CDK6. In addition, cyclin D1 conveys kinase-independent transcriptional functions of cyclin D1. Here we report that cyclin D1 associates with H2BS14 via an intrinsically disordered domain (IDD). The same region of cyclin D1 was necessary for the induction of aneuploidy, induction of the DNA damage response, cyclin D1-mediated recruitment into chromatin, and CIN gene transcription. In response to DNA damage H2BS14 phosphorylation occurs, resulting in co-localization with γH2AX in DNA damage foci. Cyclin D1 ChIP seq and γH2AX ChIP seq revealed ~14% overlap. As the cyclin D1 IDD functioned independently of the CDK activity to drive CIN, the IDD domain may provide a rationale new target to complement CDK-extinction strategies.

2.
Cells ; 12(18)2023 Sep 08.
Article de Anglais | MEDLINE | ID: mdl-37759462

RÉSUMÉ

The G-protein-coupled receptor C-C chemokine receptor 5 (CCR5) functions as a co-receptor for the entry of HIV into immune cells. CCR5 binds promiscuously to a diverse array of ligands initiating cell signaling that includes guided migration. Although well known to be expressed on immune cells, recent studies have shown the induction of CCR5 on the surface of breast cancer epithelial cells. The function of CCR5 on breast cancer epithelial cells includes the induction of aberrant cell survival signaling and tropism towards chemo attractants. As CCR5 is not expressed on normal epithelium, the receptor provides a potential useful target for therapy. Inhibitors of CCR5 (CCR5i), either small molecules (maraviroc, vicriviroc) or humanized monoclonal antibodies (leronlimab) have shown anti-tumor and anti-metastatic properties in preclinical studies. In early clinical studies, reviewed herein, CCR5i have shown promising results and evidence for effects on both the tumor and the anti-tumor immune response. Current clinical studies have therefore included combination therapy approaches with checkpoint inhibitors.

3.
Pharmacol Ther ; 248: 108478, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37321373

RÉSUMÉ

Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPß) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.


Sujet(s)
Transduction du signal , Thromboxanes , Humains , Isoformes de protéines/génétique , Isoformes de protéines/métabolisme , Protéines G/métabolisme , Récepteurs du thromboxane 2 et prostaglandine H2/génétique , Récepteurs du thromboxane 2 et prostaglandine H2/métabolisme , Thromboxane A2/métabolisme
4.
Oncogene ; 42(22): 1857-1873, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37095257

RÉSUMÉ

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Sujet(s)
Tumeur intraépithéliale prostate , Tumeurs de la prostate , Mâle , Humains , Tumeur intraépithéliale prostate/génétique , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/génétique , Tumeurs de la prostate/métabolisme , Prostate/métabolisme , Altération de l'ADN/génétique , Facteur de croissance transformant bêta/génétique , Protéines de l'oeil/métabolisme , Facteurs de transcription/génétique
5.
Res Sq ; 2023 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-36712010

RÉSUMÉ

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

6.
FEBS J ; 2022 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-36471658

RÉSUMÉ

Lysine acetylation is a common reversible post-translational modification of proteins that plays a key role in regulating gene expression. Nuclear receptors (NRs) include ligand-inducible transcription factors and orphan receptors for which the ligand is undetermined, which together regulate the expression of genes involved in development, metabolism, homeostasis, reproduction and human diseases including cancer. Since the original finding that the ERα, AR and HNF4 are acetylated, we now understand that the vast majority of NRs are acetylated and that this modification has profound effects on NR function. Acetylation sites are often conserved and involve both ordered and disordered regions of NRs. The acetylated residues function as part of an intramolecular signalling platform intersecting phosphorylation, methylation and other modifications. Acetylation of NR has been shown to impact recruitment into chromatin, co-repressor and coactivator complex formation, sensitivity and specificity of regulation by ligand and ligand antagonists, DNA binding, subcellular distribution and transcriptional activity. A growing body of evidence in mice indicates a vital role for NR acetylation in metabolism. Additionally, mutations of the NR acetylation site occur in human disease. This review focuses on the role of NR acetylation in coordinating signalling in normal physiology and disease.

7.
Cancers (Basel) ; 14(21)2022 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-36358806

RÉSUMÉ

Cyclin-dependent kinases (CDKs) govern cell-cycle checkpoint transitions necessary for cancer cell proliferation. Recent developments have illustrated nuanced important differences between mono CDK inhibitor (CDKI) treatment and the combination therapies of breast cancers. The CDKIs that are currently FDA-approved for breast cancer therapy are oral agents that selectively inhibit CDK4 and CDK6, include palbociclib (Ibrance), ribociclib (Kisqali), and abemaciclib (Verzenio). CDKI therapy is effective in hormone receptor positive (HR+), and human epidermal growth factor receptor two negative (HER2-) advanced breast cancers (ABC) malignancies, but remains susceptible due to estrogen and progesterone receptor overexpression. Adding a CDK4/6I to endocrine therapy increases efficacy and delays disease progression. Given the side effects of CDKI, identifying potential new treatments to enhance CDKI effectiveness is essential. Recent long-term studies with Palbociclib, including the PALLAS and PENELOPE B, which failed to meet their primary endpoints of influencing progression-free survival, suggest a deeper mechanistic understanding of cyclin/CDK functions is required. The impact of CDKI on the anti-tumor immune response represents an area of great promise. CDKI therapy resistance that arises provides the opportunity for specific types of new therapies currently in clinical trials.

8.
Molecules ; 27(19)2022 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-36234768

RÉSUMÉ

Over the last two decades, there has been an increasing awareness of the role of eicosanoids in the development and progression of several types of cancer, including breast, prostate, lung, and colorectal cancers. Several processes involved in cancer development, such as cell growth, migration, and angiogenesis, are regulated by the arachidonic acid derivative thromboxane A2 (TXA2). Higher levels of circulating TXA2 are observed in patients with multiple cancers, and this is accompanied by overexpression of TXA2 synthase (TBXAS1, TXA2S) and/or TXA2 receptors (TBXA2R, TP). Overexpression of TXA2S or TP in tumor cells is generally associated with poor prognosis, reduced survival, and metastatic disease. However, the role of TXA2 signaling in the stroma during oncogenesis has been underappreciated. TXA2 signaling regulates the tumor microenvironment by modulating angiogenic potential, tumor ECM stiffness, and host immune response. Moreover, the by-products of TXA2S are highly mutagenic and oncogenic, adding to the overall phenotype where TXA2 synthesis promotes tumor formation at various levels. The stability of synthetic enzymes and receptors in this pathway in most cancers (with few mutations reported) suggests that TXA2 signaling is a viable target for adjunct therapy in various tumors to reduce immune evasion, primary tumor growth, and metastasis.


Sujet(s)
Tumeurs , Thromboxane-A synthase , Acide arachidonique , Éicosanoïdes , Humains , Mâle , Tumeurs/génétique , Récepteur thromboxane , Thromboxane A2 , Thromboxane-A synthase/génétique , Thromboxane-A synthase/métabolisme , Thromboxanes , Microenvironnement tumoral
9.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article de Anglais | MEDLINE | ID: mdl-35269911

RÉSUMÉ

Preeclampsia (PE) and intrauterine growth restriction (IUGR) are the leading causes of maternal and fetal morbidity/mortality. The central deficit in both conditions is impaired placentation due to poor trophoblast invasion, resulting in a hypoxic milieu in which oxidative stress contributes to the pathology. We examine the factors driving the hypoxic response in severely preterm PE (n = 19) and IUGR (n = 16) placentae compared to the spontaneous preterm (SPT) controls (n = 13) using immunoblotting, RT-PCR, immunohistochemistry, proximity ligation assays, and Co-IP. Both hypoxia-inducible factor (HIF)-1α and HIF-2α are increased at the protein level and functional in pathological placentae, as target genes prolyl hydroxylase domain (PHD)2, PHD3, and soluble fms-like tyrosine kinase-1 (sFlt-1) are increased. Accumulation of HIF-α-subunits occurs in the presence of accessory molecules required for their degradation (PHD1, PHD2, and PHD3 and the E3 ligase von Hippel-Lindau (VHL)), which were equally expressed or elevated in the placental lysates of PE and IUGR. However, complex formation between VHL and HIF-α-subunits is defective. This is associated with enhanced VHL/DJ1 complex formation in both PE and IUGR. In conclusion, we establish a significant mechanism driving the maladaptive responses to hypoxia in the placentae from severe PE and IUGR, which is central to the pathogenesis of both diseases.


Sujet(s)
Pré-éclampsie , Femelle , Retard de croissance intra-utérin/métabolisme , Humains , Hypoxie/métabolisme , Sous-unité alpha du facteur-1 induit par l'hypoxie/génétique , Sous-unité alpha du facteur-1 induit par l'hypoxie/métabolisme , Nouveau-né , Oxygène/métabolisme , Placenta/métabolisme , Placentation , Pré-éclampsie/métabolisme , Grossesse
10.
JCI Insight ; 6(21)2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34747371

RÉSUMÉ

Patients with diabetes with coronary microvascular disease (CMD) exhibit higher cardiac mortality than patients without CMD. However, the molecular mechanism by which diabetes promotes CMD is poorly understood. RNA-binding protein human antigen R (HuR) is a key regulator of mRNA stability and translation; therefore, we investigated the role of HuR in the development of CMD in mice with type 2 diabetes. Diabetic mice exhibited decreases in coronary flow velocity reserve (CFVR; a determinant of coronary microvascular function) and capillary density in the left ventricle. HuR levels in cardiac endothelial cells (CECs) were significantly lower in diabetic mice and patients with diabetes than the controls. Endothelial-specific HuR-KO mice also displayed significant reductions in CFVR and capillary density. By examining mRNA levels of 92 genes associated with endothelial function, we found that HuR, Cx40, and Nox4 levels were decreased in CECs from diabetic and HuR-KO mice compared with control mice. Cx40 expression and HuR binding to Cx40 mRNA were downregulated in CECs from diabetic mice. Cx40-KO mice exhibited decreased CFVR and capillary density, whereas endothelium-specific Cx40 overexpression increased capillary density and improved CFVR in diabetic mice. These data suggest that decreased HuR contributes to the development of CMD in diabetes through downregulation of gap junction protein Cx40 in CECs.


Sujet(s)
Connexines/métabolisme , Diabète de type 2/génétique , Animaux , Modèles animaux de maladie humaine , Régulation négative , Humains , Mâle , Souris
11.
Sci Rep ; 11(1): 20971, 2021 10 25.
Article de Anglais | MEDLINE | ID: mdl-34697371

RÉSUMÉ

Intrauterine Growth Restriction (IUGR) is a leading cause of perinatal death with no effective cure, affecting 5-10% pregnancies globally. Suppressed pro-inflammatory Th1/Th17 immunity is necessary for pregnancy success. However, in IUGR, the inflammatory response is enhanced and there is a limited understanding of the mechanisms that lead to this abnormality. Regulation of maternal T-cells during pregnancy is driven by Nuclear Factor Kappa B p65 (NF-κB p65), and we have previously shown that p65 degradation in maternal T-cells is induced by Fas activation. Placental exosomes expressing Fas ligand (FasL) have an immunomodulatory function during pregnancy. The aim of this study is to investigate the mechanism and source of NF-κB regulation required for successful pregnancy, and whether this is abrogated in IUGR. Using flow cytometry, we demonstrate that p65+ Th1/Th17 cells are reduced during normal pregnancy, but not during IUGR, and this phenotype is enforced when non-pregnant T-cells are cultured with normal maternal plasma. We also show that isolated exosomes from IUGR plasma have decreased FasL expression and are reduced in number compared to exosomes from normal pregnancies. In this study, we highlight a potential role for FasL+ exosomes to regulate NF-κB p65 in T-cells during pregnancy, and provide the first evidence that decreased exosome production may contribute to the dysregulation of p65 and inflammation underlying IUGR pathogenesis.


Sujet(s)
Ligand de Fas/métabolisme , Retard de croissance intra-utérin/immunologie , Placenta/métabolisme , Lymphocytes auxiliaires Th1/immunologie , Cellules Th17/immunologie , Facteur de transcription RelA/métabolisme , Adulte , Cellules cultivées , Exosomes/métabolisme , Femelle , Cytométrie en flux , Humains , Âge maternel , Grossesse , Troisième trimestre de grossesse/immunologie , Jeune adulte
12.
Front Oncol ; 11: 700629, 2021.
Article de Anglais | MEDLINE | ID: mdl-34631530

RÉSUMÉ

Reprogramming of metabolic priorities promotes tumor progression. Our understanding of the Warburg effect, based on studies of cultured cancer cells, has evolved to a more complex understanding of tumor metabolism within an ecosystem that provides and catabolizes diverse nutrients provided by the local tumor microenvironment. Recent studies have illustrated that heterogeneous metabolic changes occur at the level of tumor type, tumor subtype, within the tumor itself, and within the tumor microenvironment. Thus, altered metabolism occurs in cancer cells and in the tumor microenvironment (fibroblasts, immune cells and fat cells). Herein we describe how these growth advantages are obtained through either "convergent" genetic changes, in which common metabolic properties are induced as a final common pathway induced by diverse oncogene factors, or "divergent" genetic changes, in which distinct factors lead to subtype-selective phenotypes and thereby tumor heterogeneity. Metabolic heterogeneity allows subtyping of cancers and further metabolic heterogeneity occurs within the same tumor mass thought of as "microenvironmental metabolic nesting". Furthermore, recent findings show that mutations of metabolic genes arise in the majority of tumors providing an opportunity for the development of more robust metabolic models of an individual patient's tumor. The focus of this review is on the mechanisms governing this metabolic heterogeneity in breast cancer.

13.
J Cell Mol Med ; 2021 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-34146379

RÉSUMÉ

The extracellular matrix (ECM) is the tissue microenvironment that regulates the characteristics of stromal and systemic cells to control processes such as inflammation and angiogenesis. Despite ongoing anti-inflammatory treatment, low levels of inflammation exist in the airways in asthma, which alters ECM deposition by airway smooth muscle (ASM) cells. The altered ECM causes aberrant behaviour of cells, such as endothelial cells, in the airway tissue. We therefore sought to characterize the composition and angiogenic potential of the ECM deposited by asthmatic and non-asthmatic ASM. After 72 hours under non-stimulated conditions, the ECM deposited by primary human asthmatic ASM cells was equal in total protein, collagen I, III and fibronectin content to that from non-asthmatic ASM cells. Further, the matrices of non-asthmatic and asthmatic ASM cells were equivalent in regulating the growth, activity, attachment and migration of primary human umbilical vein endothelial cells (HUVECs). Under basal conditions, asthmatic and non-asthmatic ASM cells intrinsically deposit an ECM of equivalent composition and angiogenic potential. Previous findings indicate that dysregulation of the airway ECM is driven even by low levels of inflammatory provocation. This study suggests the need for more effective anti-inflammatory therapies in asthma to maintain the airway ECM and regulate ECM-mediated aberrant angiogenesis.

14.
Cancers (Basel) ; 13(9)2021 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-33946495

RÉSUMÉ

HER2, which is associated with clinically aggressive disease, is overexpressed in 15-20% of breast cancers (BC). The host immune system participates in the therapeutic response of HER2+ breast cancer. Identifying genetic programs that participate in ErbB2-induced tumors may provide the rational basis for co-extinction therapeutic approaches. Peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in a variety of malignancies, governs biological functions through transcriptional programs. Herein, genetic deletion of endogenous Pparγ1 restrained mammary tumor progression, lipogenesis, and induced local mammary tumor macrophage infiltration, without affecting other tissue hematopoietic stem cell pools. Endogenous Pparγ1 induced expression of both an EphA2-Amphiregulin and an inflammatory INFγ and Cxcl5 signaling module, that was recapitulated in human breast cancer. Pparγ1 bound directly to growth promoting and proinflammatory target genes in the context of chromatin. We conclude Pparγ1 promotes ErbB2-induced tumor growth and inflammation and represents a relevant target for therapeutic coextinction. Herein, endogenous Pparγ1 promoted ErbB2-mediated mammary tumor onset and progression. PPARγ1 increased expression of an EGF-EphA2 receptor tyrosine kinase module and a cytokine/chemokine 1 transcriptional module. The induction of a pro-tumorigenic inflammatory state by Pparγ1 may provide the rationale for complementary coextinction programs in ErbB2 tumors.

15.
Int J Mol Sci ; 22(9)2021 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-33923334

RÉSUMÉ

The mechanisms governing therapeutic resistance of the most aggressive and lethal primary brain tumor in adults, glioblastoma, have increasingly focused on tumor stem cells. These cells, protected by the periarteriolar hypoxic GSC niche, contribute to the poor efficacy of standard of care treatment of glioblastoma. Integrated proteogenomic and metabolomic analyses of glioblastoma tissues and single cells have revealed insights into the complex heterogeneity of glioblastoma and stromal cells, comprising its tumor microenvironment (TME). An additional factor, which isdriving poor therapy response is the distinct genetic drivers in each patient's tumor, providing the rationale for a more individualized or personalized approach to treatment. We recently reported that the G protein-coupled receptor CCR5, which contributes to stem cell expansion in other cancers, is overexpressed in glioblastoma cells. Overexpression of the CCR5 ligand CCL5 (RANTES) in glioblastoma completes a potential autocrine activation loop to promote tumor proliferation and invasion. CCL5 was not expressed in glioblastoma stem cells, suggesting a need for paracrine activation of CCR5 signaling by the stromal cells. TME-associated immune cells, such as resident microglia, infiltrating macrophages, T cells, and mesenchymal stem cells, possibly release CCR5 ligands, providing heterologous signaling between stromal and glioblastoma stem cells. Herein, we review current therapies for glioblastoma, the role of CCR5 in other cancers, and the potential role for CCR5 inhibitors in the treatment of glioblastoma.


Sujet(s)
Antinéoplasiques/usage thérapeutique , Tumeurs du cerveau/traitement médicamenteux , Glioblastome/traitement médicamenteux , Récepteurs CCR5/composition chimique , Animaux , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Glioblastome/génétique , Glioblastome/anatomopathologie , Humains , Thérapie moléculaire ciblée , Récepteurs CCR5/génétique , Récepteurs CCR5/métabolisme , Transduction du signal
17.
Breast Cancer Res ; 23(1): 11, 2021 01 23.
Article de Anglais | MEDLINE | ID: mdl-33485378

RÉSUMÉ

BACKGROUND: Triple-negative breast cancer (BCa) (TNBC) is a deadly form of human BCa with limited treatment options and poor prognosis. In our prior analysis of over 2200 breast cancer samples, the G protein-coupled receptor CCR5 was expressed in > 95% of TNBC samples. A humanized monoclonal antibody to CCR5 (leronlimab), used in the treatment of HIV-infected patients, has shown minimal side effects in large patient populations. METHODS: A humanized monoclonal antibody to CCR5, leronlimab, was used for the first time in tissue culture and in mice to determine binding characteristics to human breast cancer cells, intracellular signaling, and impact on (i) metastasis prevention and (ii) impact on established metastasis. RESULTS: Herein, leronlimab was shown to bind CCR5 in multiple breast cancer cell lines. Binding of leronlimab to CCR5 reduced ligand-induced Ca+ 2 signaling, invasion of TNBC into Matrigel, and transwell migration. Leronlimab enhanced the BCa cell killing of the BCa chemotherapy reagent, doxorubicin. In xenografts conducted with Nu/Nu mice, leronlimab reduced lung metastasis of the TNBC cell line, MB-MDA-231, by > 98% at 6 weeks. Treatment with leronlimab reduced the metastatic tumor burden of established TNBC lung metastasis. CONCLUSIONS: The safety profile of leronlimab, together with strong preclinical evidence to both prevent and reduce established breast cancer metastasis herein, suggests studies of clinical efficacy may be warranted.


Sujet(s)
Anticorps monoclonaux humanisés/pharmacologie , Antinéoplasiques/pharmacologie , Antagonistes des récepteurs CCR5/pharmacologie , Mort cellulaire/génétique , Altération de l'ADN/effets des médicaments et des substances chimiques , Anticorps anti-VIH/pharmacologie , Animaux , Tumeurs du sein , Signalisation calcique/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Cellules cultivées , Chimiokine CCL3/métabolisme , Chimiokine CCL4/métabolisme , Modèles animaux de maladie humaine , Synergie des médicaments , Femelle , Humains , Souris , Tests d'activité antitumorale sur modèle de xénogreffe
18.
J Am Heart Assoc ; 9(24): e018327, 2020 12 15.
Article de Anglais | MEDLINE | ID: mdl-33307937

RÉSUMÉ

Background Abnormal endothelial function in the lungs is implicated in the development of pulmonary hypertension; however, there is little information about the difference of endothelial function between small distal pulmonary artery (PA) and large proximal PA and their contribution to the development of pulmonary hypertension. Herein, we investigate endothelium-dependent relaxation in different orders of PAs and examine the molecular mechanisms by which chronic hypoxia attenuates endothelium-dependent pulmonary vasodilation, leading to pulmonary hypertension. Methods and Results Endothelium-dependent relaxation in large proximal PAs (second order) was primarily caused by releasing NO from the endothelium, whereas endothelium-dependent hyperpolarization (EDH)-mediated vasodilation was prominent in small distal PAs (fourth-fifth order). Chronic hypoxia abolished EDH-mediated relaxation in small distal PAs without affecting smooth muscle-dependent relaxation. RNA-sequencing data revealed that, among genes related to EDH, the levels of Cx37, Cx40, Cx43, and IK were altered in mouse pulmonary endothelial cells isolated from chronically hypoxic mice in comparison to mouse pulmonary endothelial cells from normoxic control mice. The protein levels were significantly lower for connexin 40 (Cx40) and higher for connexin 37 in mouse pulmonary endothelial cells from hypoxic mice than normoxic mice. Cx40 knockout mice exhibited significant attenuation of EDH-mediated relaxation and marked increase in right ventricular systolic pressure. Interestingly, chronic hypoxia led to a further increase in right ventricular systolic pressure in Cx40 knockout mice without altering EDH-mediated relaxation. Furthermore, overexpression of Cx40 significantly decreased right ventricular systolic pressure in chronically hypoxic mice. Conclusions These data suggest that chronic hypoxia-induced downregulation of endothelial Cx40 results in impaired EDH-mediated relaxation in small distal PAs and contributes to the development of pulmonary hypertension.


Sujet(s)
Connexines/métabolisme , Endothélium vasculaire/métabolisme , Hypertension pulmonaire/physiopathologie , Hypoxie/physiopathologie , Animaux , Facteurs biologiques , Connexine 43/métabolisme , Régulation négative/génétique , Endothélium vasculaire/physiopathologie , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Modèles animaux , Monoxyde d'azote/métabolisme , Artère pulmonaire/physiopathologie , Vasodilatation/physiologie , ,
19.
Eur J Cardiothorac Surg ; 58(3): 500-510, 2020 09 01.
Article de Anglais | MEDLINE | ID: mdl-32391914

RÉSUMÉ

SUMMARY: Previous attempts in cardiac bioengineering have failed to provide tissues for cardiac regeneration. Recent advances in 3-dimensional bioprinting technology using prevascularized myocardial microtissues as 'bioink' have provided a promising way forward. This review guides the reader to understand why myocardial tissue engineering is difficult to achieve and how revascularization and contractile function could be restored in 3-dimensional bioprinted heart tissue using patient-derived stem cells.


Sujet(s)
Bio-impression , Procédures de chirurgie cardiaque , Coeur , Humains , Impression tridimensionnelle , Ingénierie tissulaire
20.
Vitam Horm ; 109: 133-149, 2019.
Article de Anglais | MEDLINE | ID: mdl-30678853

RÉSUMÉ

Encouraging changes in the steroid hormone receptor field from initially questioning the role of non-genomic actions of steroid hormones to acceptance of the concept that the acute, membrane-centric actions are linked and/or regulate the nuclear actions. The focus of this chapter is how the non-genomic effects are linked to the longer lasting, genomic actions of aldosterone. By non-genomic we refer to the rapid actions that occur within minutes do not require transcription or translation and occur in both classical MR target organs (kidney and colon) and non-epithelial tissues (blood vessels, heart, and adipose). The mechanism of rapid non-genomic actions of aldosterone varies between tissues. As a result, this chapter is viewed through the lens of how the non-genomic and genomic actions of aldosterone are linked in cardiovascular disease. Specifically, regulation of sodium flux in the myocardium has an important role in pathogenesis of cardiac arrhythmia. Since there are now recognized gender differences in cardiovascular disease, we also include preliminary studies to investigate the interaction of sex steroid hormones with the ligand binding pocket of the mineralocorticoid receptor. Overall, we aim to showcase how the non-genomic effects of aldosterone potentially modulate the genomic effects and represent additional targets for intervention.


Sujet(s)
Aldostérone/métabolisme , Transduction du signal/physiologie , Animaux , Femelle , Hormones sexuelles stéroïdiennes/métabolisme , Humains , Mâle , Récepteurs couplés aux protéines G , Récepteurs des minéralocorticoïdes/métabolisme , Facteurs sexuels
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...