Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Omega ; 9(6): 6803-6814, 2024 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-38371754

RÉSUMÉ

Magnetic nanocomposite adsorbents are cost-effective, environmentally friendly, easy to use, and highly efficient at removing metals from large volumes of wastewater in a short time by using an external magnetic field. In this study, an Fe3O4/NiO composite nanoadsorbent was prepared by varying the mass percent ratios of NiO (50, 40, 30, 20%), which are denoted Fe3O4/50%NiO, Fe3O4/40%NiO, Fe3O4/30%NiO, and Fe3O4/20%NiO, respectively, using Hagenia abyssinica plant extract as the template/capping agent and a simple mechanical grinding technique. The nanocomposites were characterized using an X-ray diffractometer (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) spectroscopy, nitrogen adsorption, and ζ-potential measurements. The adsorption performance of the nanoadsorbent was assessed for the removal of lead (Pb2+) ions from aqueous solutions. Among the composite adsorbents, Fe3O4/50%NiO demonstrated the best Pb(II) removal efficiency (96.65%) from aqueous solutions within 80 min at pH 8, at a 100 mg/L lead concentration and 0.09 g of adsorbent dose. However, with the same parameter, only 62.8% of Pb(II) was removed using Fe3O4 nanoparticles (NPs). The adsorptive performance indicated that the optimum amount of porous material (NiO) in the preparation of the Fe3O4/NiO composite nanoadsorbent, with the aid of H. abyssinica plant extract, enhances the removal of toxic heavy metals from aqueous solutions. Multiple isotherm and kinetic models were used to analyze the equilibrium data. Adsorption isotherm and kinetic studies were found to follow the Freundlich isotherm and pseudo-second-order kinetics, respectively.

2.
Sci Rep ; 13(1): 14653, 2023 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-37670113

RÉSUMÉ

Advanced materials undergo a complex and lengthy process of maturation for scaling up and deployment, mainly due to the high cost of their precursors. Therefore, it is highly desirable to fabricate highly valuable advanced porous solid-state materials, with proven applicability, by sustainably combining organic and inorganic waste materials as precursors. This study successfully demonstrates the preparation of Cr-terephthalate Metal-Organic Frameworks (Cr-BDC MOFs) by combining metal salt and organic linker extracted from tannery effluent and waste plastic bottles. The waste from tanneries was used as the source of Cr(III), while terephthalic acid was obtained from the alkaline hydrolysis of plastic bottles. Appropriate extraction and assembly processes led to the functional Cr-BDC MOFs, MIL-101(Cr) and MIL-53(Cr). The prepared MOFs showed similar properties (surface area, hydrolytic and thermal stability, and water adsorption performance) to similar MOFs synthesized from pure commercial-grade precursors, as confirmed by N2 sorption, XRD, TGA, and water adsorption experiments. The advancements made in this study represent significant progress in overcoming the bottleneck of MOF production cost efficiency via applying sustainability principles and pave the way for easy scaling-up and maturation of MOF-based processes, for air dehumidification and water harvesting as a case study.

3.
Sci Rep ; 13(1): 16454, 2023 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-37777622

RÉSUMÉ

Industrial effluents are a leading major threat for water contamination, subsequently which results in severe health associated risks. Hence, purifying wastewater before releasing into the water resources is essential to avoid contamination. In this study, ZnO/Cu-DPA nano-composites were prepared by altering the percentage of Cu-DPA (20%, 30%, 40%, and 50% which are denoted to be ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA) using a simple mechanical grinding process. Several spectroscopic studies were employed such as electron paramagnetic analysis (EPR), powdered X-ray diffractometer (PXRD), UV-Vis absorbance spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscope to characterize these nano-composites. The photo-catalytic activities of the prepared nano-composites were studied by degrading MB under visible light irradiation. ZnO, ZnO/20%Cu-DPA, ZnO/30%Cu-DPA, ZnO/40%Cu-DPA and ZnO/50%Cu-DPA degradation efficiencies were determined to be 71.8, 78.5, 77.1, and 66.1%, respectively. Among the composite catalysts, the ZnO/20%Cu-DPA coupled system are demonstrated the best efficiency (87%) for photo-degradation of MB within 80 min when exposed to visible light. The ZnO/Cu-DPA nano-composites had a greater MB photodegradation efficiency than pristine ZnO owing to p-n heterojunction in the linked system. Under visible light irradiation, the ZnO/20%Cu-DPA catalysed the conversion of dissolved O2 to hydroxyl radicals (OH·), triggering the reduction of MB. This suggests that ·OH is the primary specific active radical involved in the photo-catalytic decomposition of MB. Furthermore, EPR analysis indicates the existence of ·OH in the photo-catalytic system. The proposed nano-composites (ZnO/20%Cu-DPA) reusability was investigated across three cycles as the most efficient photo-catalyst. The results show that, the ZnO/Cu-DPA nano-catalyst is a potential candidate for the remediation of dirty water.

4.
ACS Omega ; 8(19): 17209-17219, 2023 May 16.
Article de Anglais | MEDLINE | ID: mdl-37214697

RÉSUMÉ

The enhanced worldwide concern for the protection and safety of the environment has made the scientific community focus their devotion on novel and highly effective approaches to heavy metals such as cadmium (Cd) pollutant removal. In this research, Dodonaea angustifolia plant extract-mediated Al2O3 and Cu2O nanoparticle (NP) syntheses were accomplished using the coprecipitation method, and the Cu2O/Al2O3 nanocomposite was prepared by simple mixing of Cu2O and Al2O3 NPs for the removal of Cd(II) ions from aqueous solution. Therefore, an efficient green, economical, facile, and eco-friendly synthesis method was employed, which improved the aggregation of individual metal oxide NPs. The chemical and physical properties of the nanocomposite were examined by different characterization techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Brunauer-Emmett-Teller (BET) surface area analysis. Furthermore, the performances of the nanoadsorbents for the adsorptive eradication of Cd2+ ions from water were investigated. The influence of pH, contact time, initial Cd quantity, and nanocomposite amount on adsorption effectiveness was carefully studied. The adsorption rates of the Cu2O/Al2O3 nanocomposite were rapid, and adsorption equilibrium was attained within 60 min for 97.36% removal of Cd(II) from water. The adsorption isotherm data were best fitted by the pseudo-second-order kinetic and Langmuir isotherm models with the highest adsorption ability of 4.48 mg/g. Therefore, the synthesized Cu2O/Al2O3 nanocomposite could be a potential candidate for a highly efficient adsorbent for heavy metal ion removal from aqueous solutions.

5.
J Am Chem Soc ; 141(51): 20480-20489, 2019 Dec 26.
Article de Anglais | MEDLINE | ID: mdl-31794212

RÉSUMÉ

Minimal edge-transitive nets are regarded as suitable blueprints for the successful practice of reticular chemistry, and par excellence ideal for the deliberate design and rational construction of highly coordinated metal-organic frameworks (MOFs). We report the systematic generation of the highly connected minimal edge-transitive related nets (transitivity [32]) from parent edge-transitive nets (transitivity [21] or [11]), and their use as a guide for the deliberate design and directional assembly of highly coordinated MOFs from their associated net-coded building units (net-cBUs), 12-connected (12-c) double six-membered ring (d6R) building units. Notably, the generated related nets enclose the distinctive highly coordinated d6R (12-c) due to the subsequent coordination number increase in one node of the resultant new related net; that is, the (3,4,12)-c kce net is the (4,6)-c soc-related net, and the (3,6,12)-c kex and urx nets are the (6,6)-c nia-related nets. Intuitively, the combination of 12-connected hexagonal prismatic rare-earth (RE) nonanuclear [RE9(µ3-O)2(µ3-OH)12(O2C-)12] carboxylate-based clusters with purposely chosen organic or organic-inorganic hybrid building units led to the formation of the targeted highly coordinated MOFs based on selected minimal edge-transitive related nets. Interestingly, the kex-MOFs can alternatively be regarded as a zeolite-like MOF (ZMOF) based on the zeolite underlying topology afx, by considering the dodecacarboxylate ligand as a d6R building unit, delineating a new avenue toward the construction of ZMOFs through the composite building units as net-cBUs. This represents a significant step toward the effective discovery and design of novel minimal edge-transitive and highly coordinated materials using the d6Rs as net-cBUs.

6.
Langmuir ; 34(48): 14546-14551, 2018 12 04.
Article de Anglais | MEDLINE | ID: mdl-30403872

RÉSUMÉ

The discovery of appropriate synthetic reaction conditions for fabricating a stable zirconium-based molecular sieve (Zr-fum-fcu-MOF) with minimal defects and its utilization in the challenging separation of linear paraffins from branched paraffins is reported. The crystallinity and structural defects were modulated and adjusted at the molecular level by controlling the synthetic reaction conditions (i.e., amounts of modulators and ligands). The impact of molecular defects on the separation of n-butane from iso-butane was studied through the preparation, fine characterization, and performance evaluation of Zr-fum-fcu-MOFs with varying degrees of defects. Defect-rich Zr-fum-fcu-MOFs were found to have poor n-butane/iso-butane separation, mainly driven by thermodynamics, while Zr-fum-fcu-MOFs with fewer or minimal defects showed efficient separation, driven mainly by kinetics and full molecular exclusion mechanisms. The impact of intrinsic defects (i.e., missing organic or inorganic blocks) on the associated mechanisms involved in the separation of n-butane/iso-butane was evidenced through single-gas adsorption, mixed-gas column breakthrough experiments, and calorimetric studies. This investigation demonstrates, for the first time, the importance of controlling intrinsic defects to maintain the selective exclusion behavior of hydrocarbon isomers when using molecular sieves.

7.
J Am Chem Soc ; 140(28): 8858-8867, 2018 07 18.
Article de Anglais | MEDLINE | ID: mdl-29923711

RÉSUMÉ

Rational design and construction of metal-organic frameworks (MOFs) with intricate structural complexity are of prime importance in reticular chemistry. We report our latest addition to the design toolbox in reticular chemistry, namely the concept of merged nets based on merging two edge-transitive nets into a minimal edge-transitive net for the rational construction of intricate mixed-linker MOFs. In essence, a valuable net for design enclosing two edges (not related by symmetry) is rationally generated by merging two edge-transitive nets, namely (3,6)-coordinated spn and 6-coordinated hxg. The resultant merged-net, a (3,6,12)-coordinated sph net with net transitivity [32] enclosing three nodes and two distinct edges, offers potential for deliberate design of intricate mixed-linker MOFs. We report implementation of the merged-net approach for the construction of isoreticular rare-earth mixed-linker MOFs, sph-MOF-1 to -4, based on the assembly of 12-c hexanuclear carboxylate-based molecular building blocks (MBBs), displaying cuboctahedral building units, 3-c tritopic ligands, and 6-c hexatopic ligands. The resultant sph-MOFs represent the first examples of MOFs where the underlying net is merged from two 3-periodic edge-transitive nets, spn and hxg. Distinctively, the sph-MOF-3 represents the first example of a mixed-linker MOF to enclose both trigonal and hexagonal linkers. The merged-nets approach allows the logical practice of isoreticular chemistry by taking into account the mathematically correlated dimensions of the two ligands to afford the deliberate construction of a mixed-linker mesoporous MOF, sph-MOF-4. The merged-net equation and two key parameters, ratio constant and MBB constant, are disclosed. A merged-net strategy for the design of mixed-linker MOFs by strictly controlling the size ratio between edges is introduced.

8.
Adv Mater ; 29(39)2017 Oct.
Article de Anglais | MEDLINE | ID: mdl-28833740

RÉSUMÉ

The development of practical solutions for the energy-efficient capture of carbon dioxide is of prime importance and continues to attract intensive research interest. Conceivably, the implementation of adsorption-based processes using different cycling modes, e.g., pressure-swing adsorption or temperature-swing adsorption, offers great prospects to address this challenge. Practically, the successful deployment of practical adsorption-based technologies depends on the development of made-to-order adsorbents expressing mutually two compulsory requisites: i) high selectivity/affinity for CO2 and ii) excellent chemical stability in the presence of impurities. This study presents a new comprehensive experimental protocol apposite for assessing the prospects of a given physical adsorbent for carbon capture under flue gas stream conditions. The protocol permits: i) the baseline performance of commercial adsorbents such as zeolite 13X, activated carbon versus liquid amine scrubbing to be ascertained, and ii) a standardized evaluation of the best reported metal-organic framework (MOF) materials for carbon dioxide capture from flue gas to be undertaken. This extensive study corroborates the exceptional CO2 capture performance of the recently isolated second-generation fluorinated MOF material, NbOFFIVE-1-Ni, concomitant with an impressive chemical stability and a low energy for regeneration. Essentially, the NbOFFIVE-1-Ni adsorbent presents the best compromise by satisfying all the required metrics for efficient CO2 scrubbing.

9.
ACS Sens ; 2(9): 1294-1301, 2017 Sep 22.
Article de Anglais | MEDLINE | ID: mdl-28809112

RÉSUMÉ

This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH3) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO2. Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH3, in contrast to other reported MOFs, and a remarkable detection selectivity toward NH3 vs CH4, NO2, H2, and C7H8. The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

10.
Chem Soc Rev ; 46(11): 3402-3430, 2017 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-28555216

RÉSUMÉ

The separation of related molecules with similar physical/chemical properties is of prime industrial importance and practically entails a substantial energy penalty, typically necessitating the operation of energy-demanding low temperature fractional distillation techniques. Certainly research efforts, in academia and industry alike, are ongoing with the main aim to develop advanced functional porous materials to be adopted as adsorbents for the effective and energy-efficient separation of various important commodities. Of special interest is the subclass of metal-organic frameworks (MOFs) with pore aperture sizes below 5-7 Å, namely ultra-microporous MOFs, which in contrast to conventional zeolites and activated carbons show great prospects for addressing key challenges in separations pertaining to energy and environmental sustainability, specifically materials for carbon capture and separation of olefin/paraffin, acetylene/ethylene, linear/branched alkanes, xenon/krypton, etc. In this tutorial review we discuss the latest developments in ultra-microporous MOF adsorbents and their use as separating agents via thermodynamics and/or kinetics and molecular sieving. Appreciably, we provide insights into the distinct microscopic mechanisms governing the resultant separation performances, and suggest a plausible correlation between the inherent structural features/topology of MOFs and the associated gas/vapour separation performance.

11.
Angew Chem Int Ed Engl ; 55(51): 15879-15883, 2016 12 19.
Article de Anglais | MEDLINE | ID: mdl-27797152

RÉSUMÉ

Herein we report the fabrication of an advanced sensor for the detection of hydrogen sulfide (H2 S) at room temperature, using thin films of rare-earth metal (RE)-based metal-organic framework (MOF) with underlying fcu topology. This unique MOF-based sensor is made via the in situ growth of fumarate-based fcu-MOF (fum-fcu-MOF) thin film on a capacitive interdigitated electrode. The sensor showed a remarkable detection sensitivity for H2 S at concentrations down to 100 ppb, with the lower detection limit around 5 ppb. The fum-fcu-MOF sensor exhibits a highly desirable detection selectivity towards H2 S vs. CH4 , NO2 , H2 , and C7 H8 as well as an outstanding H2 S sensing stability as compared to other reported MOFs.

12.
Angew Chem Int Ed Engl ; 54(48): 14353-8, 2015 Nov 23.
Article de Anglais | MEDLINE | ID: mdl-26429515

RÉSUMÉ

Using isoreticular chemistry allows the design and construction of a new rare-earth metal (RE) fcu-MOF with a suitable aperture size for practical steric adsorptive separations. The judicious choice of a relatively short organic building block, namely fumarate, to bridge the 12-connected RE hexanuclear clusters has afforded the contraction of the well-defined RE-fcu-MOF triangular window aperture, the sole access to the two interconnected octahedral and tetrahedral cages. The newly constructed RE (Y(3+) and Tb(3+)) fcu-MOF analogues display unprecedented total exclusion of branched paraffins from normal paraffins. The resultant window aperture size of about 4.7 Å, regarded as a sorbate-size cut-off, enabled a complete sieving of branched paraffins from normal paraffins. The results are supported by collective single gas and mixed gas/vapor adsorption and calorimetric studies.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...