Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 26
Filtrer
1.
Front Transplant ; 3: 1339898, 2024.
Article de Anglais | MEDLINE | ID: mdl-38993757

RÉSUMÉ

Vascularized composite allotransplantation (VCA) is an emerging field in transplant surgery. Despite overall positive outcomes, VCA confers risk for multiple complications related to the procedure and subsequent immunosuppression. Post-transplant lymphoproliferative disorder (PTLD) is a heterogeneous group of lymphoproliferative disorders occurring after solid organ and hematopoietic stem cell transplant. A patient with PTLD after bilateral upper extremity transplantation is presented as well as a review of all known cases of PTLD after VCA, with a focus on the unique epidemiology, presentation, and treatment in this population.

2.
Adv Mater ; : e2312088, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38638030

RÉSUMÉ

Disorders in the regulatory arm of the adaptive immune system result in autoimmune-mediated diseases. While systemic immunosuppression is the prevailing approach to manage them, it fails to achieve long-lasting remission due to concomitant suppression of the regulatory arm and carries the risk of heightened susceptibility to infections and malignancies. Alopecia areata is a condition characterized by localized hair loss due to autoimmunity. The accessibility of the skin allows local rather than systemic intervention to avoid broad immunosuppression. It is hypothesized that the expansion of endogenous regulatory T cells (Tregs) at the site of antigen encounter can restore the immune balance and generate a long-lasting tolerogenic response. A hydrogel microneedle (MN) patch is therefore utilized for delivery of CCL22, a Treg-chemoattractant, and IL-2, a Treg survival factor to amplify them. In an immune-mediated murine model of alopecia, local bolstering of Treg numbers is shown, leading to sustained hair regrowth and attenuation of inflammatory pathways. In a humanized skin transplant mouse model, expansion of Tregs within human skin is confirmed without engendering peripheral immunosuppression. The patch offers high-loading capacity and shelf-life stability for prospective clinical translation. By harmonizing immune responses locally, the aim is to reshape the landscape of autoimmune skin disease management.

3.
J Infect Dis ; 2024 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-38513368

RÉSUMÉ

BACKGROUND: Immunosuppressed individuals, including solid organ transplant recipients (SOTRs), are at high risk for severe COVID-19. METHODS: This open-label, phase 3b trial evaluated mRNA-1273 in 137 adult kidney and 77 liver SOTRs and 20 immunocompetent participants. In Part A, SOTRs received three 100-µg doses of mRNA-1273; immunocompetent participants received 2 doses. In Part B, an additional 100-µg dose was offered ≥4 months post-primary series. Here, we report interim trial results. RESULTS: mRNA-1273 was well-tolerated in SOTRs. Four serious adverse events were considered vaccine-related by the investigator in 3 SOTRs with pre-existing comorbidities. No vaccine-related biopsy-proven organ rejection events or deaths were reported. mRNA-1273 elicited modest neutralizing antibody (nAb) responses after dose 2 and improved responses after dose 3 in SOTRs. Post-dose 3 responses among liver SOTRs were comparable to post-dose 2 responses in immunocompetent participants. Post-additional dose responses were increased in SOTRs regardless of the primary series vaccination. In liver SOTRs, post-additional dose responses were ∼3-fold higher versus post-dose 2 but were lower than immunocompetent participant responses. Most kidney SOTRs received multiple immunosuppressants and had reduced antibody responses versus liver SOTRs. CONCLUSIONS: mRNA-1273 (100 µg) was well-tolerated and dose 3 and the additional dose improved antibody responses among SOTRs.

4.
J Clin Invest ; 134(1)2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-37934601

RÉSUMÉ

Although most CD8+ T cells are equipped to kill infected or transformed cells, a subset may regulate immune responses and preserve self-tolerance. Here, we describe a CD8 lineage that is instructed to differentiate into CD8 T regulatory cells (Tregs) by a surprisingly restricted set of T cell receptors (TCRs) that recognize MHC-E (mouse Qa-1) and several dominant self-peptides. Recognition and elimination of pathogenic target cells that express these Qa-1-self-peptide complexes selectively inhibits pathogenic antibody responses without generalized immune suppression. Immunization with synthetic agonist peptides that mobilize CD8 Tregs in vivo efficiently inhibit antigraft antibody responses and markedly prolong heart and kidney organ graft survival. Definition of TCR-dependent differentiation and target recognition by this lineage of CD8 Tregs may open the way to new therapeutic approaches to inhibit pathogenic antibody responses.


Sujet(s)
Lymphocytes T CD8+ , Lymphocytes T régulateurs , Souris , Animaux , Récepteurs aux antigènes des cellules T , Peptides , Tolérance immunitaire , Antigènes d'histocompatibilité de classe I
5.
Trends Immunol ; 45(1): 48-61, 2024 01.
Article de Anglais | MEDLINE | ID: mdl-38123369

RÉSUMÉ

In the quest for more precise and effective organ transplantation therapies, chimeric antigen receptor (CAR) regulatory T cell (Treg) therapies represent a potential cutting-edge advance. This review comprehensively analyses CAR Tregs and how they may address important drawbacks of polyclonal Tregs and conventional immunosuppressants. We examine a growing body of preclinical findings of CAR Treg therapy in transplantation, discuss CAR Treg design specifics, and explore established and attractive new targets in transplantation. In addition, we explore present impediments where future studies will be necessary to determine the efficacy of CAR Tregs in reshaping alloimmune responses and transplant microenvironments to reduce reliance on chemical immunosuppressants. Overall, ongoing studies and trials are crucial for understanding the full scope of CAR Treg therapy in transplantation.


Sujet(s)
Transplantation d'organe , Récepteurs chimériques pour l'antigène , Humains , Immunothérapie adoptive , Immunosuppresseurs , Lymphocytes T régulateurs , Récepteurs aux antigènes des cellules T
6.
Front Immunol ; 14: 1139358, 2023.
Article de Anglais | MEDLINE | ID: mdl-37063857

RÉSUMÉ

Background: Kidney transplant recipients are currently treated with nonspecific immunosuppressants that cause severe systemic side effects. Current immunosuppressants were developed based on their effect on T-cell activation rather than the underlying mechanisms driving alloimmune responses. Thus, understanding the role of the intragraft microenvironment will help us identify more directed therapies with lower side effects. Methods: To understand the role of the alloimmune response and the intragraft microenvironment in cellular rejection progression, we conducted a Single nucleus RNA sequencing (snRNA-seq) on one human non-rejecting kidney allograft sample, one borderline sample, and T-cell mediated rejection (TCMR) sample (Banff IIa). We studied the differential gene expression and enriched pathways in different conditions, in addition to ligand-receptor (L-R) interactions. Results: Pathway analysis of T-cells in borderline sample showed enrichment for allograft rejection pathway, suggesting that the borderline sample reflects an early rejection. Hence, this allows for studying the early stages of cellular rejection. Moreover, we showed that focal adhesion (FA), IFNg pathways, and endomucin (EMCN) were significantly upregulated in endothelial cell clusters (ECs) of borderline compared to ECs TCMR. Furthermore, we found that pericytes in TCMR seem to favor endothelial permeability compared to borderline. Similarly, T-cells interaction with ECs in borderline differs from TCMR by involving DAMPS-TLRs interactions. Conclusion: Our data revealed novel roles of T-cells, ECs, and pericytes in cellular rejection progression, providing new clues on the pathophysiology of allograft rejection.


Sujet(s)
Transplantation rénale , Humains , Transplantation rénale/effets indésirables , Interféron gamma , Contacts focaux , Rein , Allogreffes , Immunosuppresseurs , Rejet du greffon
7.
Pharmaceutics ; 15(4)2023 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-37111759

RÉSUMÉ

Chordomas account for approximately 1-4% of all malignant bone tumors and 20% of primary tumors of the spinal column. It is a rare disease, with an incidence estimated to be approximately 1 per 1,000,000 people. The underlying causative mechanism of chordoma is unknown, which makes it challenging to treat. Chordomas have been linked to the T-box transcription factor T (TBXT) gene located on chromosome 6. The TBXT gene encodes a protein transcription factor TBXT, or brachyury homolog. Currently, there is no approved targeted therapy for chordoma. Here, we performed a small molecule screening to identify small chemical molecules and therapeutic targets for treating chordoma. We screened 3730 unique compounds and selected 50 potential hits. The top three hits were Ribociclib, Ingenol-3-angelate, and Duvelisib. Among the top 10 hits, we found a novel class of small molecules, including proteasomal inhibitors, as promising molecules that reduce the proliferation of human chordoma cells. Furthermore, we discovered that proteasomal subunits PSMB5 and PSMB8 are increased in human chordoma cell lines U-CH1 and U-CH2, confirming that the proteasome may serve as a molecular target whose specific inhibition may lead to better therapeutic strategies for chordoma.

9.
Front Transplant ; 2: 1149334, 2023.
Article de Anglais | MEDLINE | ID: mdl-38993887

RÉSUMÉ

In the transplant community, research efforts exploring endogenous alternatives to inducing tolerogenic allo-specific immune responses are much needed. In this regard, CD4 + FoxP3+ regulatory T cells (Tregs) are appealing candidates due to their intrinsic natural immunosuppressive qualities. To date, various homeostatic factors that dictate Treg survival and fitness have been elucidated, particularly the non-redundant roles of antigenic CD3ζ/T-cell-receptor, co-stimulatory CD28, and cytokine interleukin (IL-)2 dependent signaling. Many of the additional biological signals that affect Tregs remain to be elucidated, however, especially in the transplant context. Previously, we demonstrated an unexpected link between type I interferons (IFNs) and Tregs in models of multiple myeloma (MM)-where MM plasmacytes escaped immunological surveillance by enhancing type I IFN signaling and precipitating upregulated Treg responses that could be overturned with specific knockdown of type I IFN signaling. Here, we elaborated on these findings by assessing the role of type I IFN signaling (IFN-α and -ß) on Treg homeostasis within an alloimmune context. Specifically, we studied the induction of Tregs from naïve CD4 T cells. Using in vitro and in vivo models of murine skin allotransplantation, we found that type I IFN indeed spatiotemporally enhanced the polarization of naïve CD4 T cells into FoxP3+ Tregs. Notably, however, this effect was not independent of, and rather co-dependent on, ancillary cytokine signals including IL-2. These findings provide evidence for the relevance of type I IFN pathway in modulating FoxP3+ Treg responses and, by extension, stipulate an additional means of facilitating Treg fitness via type I IFNs.

10.
Front Transplant ; 2: 1148725, 2023.
Article de Anglais | MEDLINE | ID: mdl-38993899

RÉSUMÉ

The current tools for diagnosing and monitoring native kidney diseases as well as allograft rejection in transplant patients are suboptimal. Creatinine and proteinuria are non-specific and poorly sensitive markers of injury. Tissue biopsies are invasive and carry potential complications. In this article, we overview the different techniques of liquid biopsy and discuss their potential to improve patients' kidney health. Several diagnostic, predictive, and prognostic biomarkers have been identified with the ability to detect and monitor the activity of native kidney diseases as well as early and chronic allograft rejection, such as donor-derived cell-free DNA, exosomes, messenger RNA/microsomal RNA, proteomics, and so on. While the results are encouraging, additional research is still needed as no biomarker appears to be perfect for a routine application in clinical practice. Despite promising advancements in biomarkers, the most important issue is the lack of standardized pre-analytical criteria. Large validation studies and uniformed standard operating procedures are required to move the findings from bench to bedside. Establishing consortia such as the Liquid Biopsy Consortium for Kidney Diseases can help expedite the research process, allow large studies to establish standardized procedures, and improve the management and outcomes of kidney diseases and of kidney transplant recipients.

11.
Am J Transplant ; 22 Suppl 4: 45-57, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36453708

RÉSUMÉ

Of all kidney transplants, half are still lost in the first decade after transplantation. Here, using genetics, we probed whether interleukin 6 (IL-6) could be a target in kidney transplantation to improve graft survival. Additionally, we investigated if a genetic risk score (GRS) based on IL6 and IL10 variants could improve prognostication of graft loss. In a prospective cohort study, DNA of 1271 donor-recipient kidney transplant pairs was analyzed for the presence of IL6, IL6R, IL10, IL10RA, and IL10RB variants. These polymorphisms and their GRS were then associated with 15-year death-censored allograft survival. The C|C-genotype of the IL6 polymorphism in donor kidneys and the combined C|C-genotype in donor-recipient pairs were both associated with a reduced risk of graft loss (p = .043 and p = .042, respectively). Additionally, the GRS based on IL6, IL6R, IL10, IL10RA, and IL10RB variants was independently associated with the risk of graft loss (HR 1.53, 95%-CI [1.32-1.84]; p < .001). Notably, the GRS improved risk stratification and prediction of graft loss beyond the level of contemporary clinical markers. Our findings reveal the merits of a polygenic IL-6-based risk score strengthened with IL-10- polymorphisms for the prognostication and risk stratification of late graft failure in kidney transplantation.


Sujet(s)
Interleukine-10 , Interleukine-6 , Humains , Interleukine-10/génétique , Interleukine-6/génétique , Études prospectives , Rein , Facteurs de risque , Allogreffes
12.
Front Immunol ; 13: 899975, 2022.
Article de Anglais | MEDLINE | ID: mdl-35757726

RÉSUMÉ

Regulatory T cells (Tregs) have shown great promise as a means of cellular therapy in a multitude of allo- and auto-immune diseases-due in part to their immunosuppressive potency. Nevertheless, the clinical efficacy of human Tregs in patients has been limited by their poor in vivo homeostasis. To avert apoptosis, Tregs require stable antigenic (CD3ζ/T-cell-receptor-mediated), co-stimulatory (CD28-driven), and cytokine (IL-2-dependent) signaling. Notably, this sequence of signals supports an activated Treg phenotype that includes a high expression of granzymes, particularly granzyme B (GrB). Previously, we have shown that aside from the functional effects of GrB in lysing target cells to modulate allo-immunity, GrB can leak out of the intracellular lysosomal granules of host Tregs, initiating pro-apoptotic pathways. Here, we assessed the role of inhibiting mechanistic target of rapamycin complex 1 (mTORC1), a recently favored drug target in the transplant field, in regulating human Treg apoptosis via GrB. Using ex vivo models of human Treg culture and a humanized mouse model of human skin allotransplantation, we found that by inhibiting mTORC1 using rapamycin, intracytoplasmic expression and functionality of GrB diminished in host Tregs; lowering human Treg apoptosis by in part decreasing the phosphorylation of S6K and c-Jun. These findings support the already clinically validated effects of mTORC1 inhibition in patients, most notably their stabilization of Treg bioactivity and in vivo homeostasis.


Sujet(s)
Apoptose , Lymphocytes T régulateurs , Animaux , Granzymes/métabolisme , Humains , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Souris , Récepteurs aux antigènes des cellules T/métabolisme
13.
Semin Nephrol ; 42(1): 2-13, 2022 01.
Article de Anglais | MEDLINE | ID: mdl-35618393

RÉSUMÉ

Rejection remains a major cause of renal allograft failure. Current diagnostic studies, interrogating the blood or urine, lack the sensitivity and specificity for early detection of rejection. Transplant kidney biopsy remains the gold standard, but is associated with morbidity. Advances in understanding the immunobiology of rejection have led to multiple, novel diagnostic tests facilitating non-invasive, earlier detection of renal allograft rejection.


Sujet(s)
Transplantation rénale , Insuffisance rénale , Marqueurs biologiques , Rejet du greffon/diagnostic , Humains , Rein
15.
Front Immunol ; 13: 838985, 2022.
Article de Anglais | MEDLINE | ID: mdl-35281011

RÉSUMÉ

Introduction: Studies have shown reduced antiviral responses in kidney transplant recipients (KTRs) following SARS-CoV-2 mRNA vaccination, but data on post-vaccination alloimmune responses and antiviral responses against the Delta (B.1.617.2) variant are limited. Materials and methods: To address this issue, we conducted a prospective, multi-center study of 58 adult KTRs receiving mRNA-BNT162b2 or mRNA-1273 vaccines. We used multiple complementary non-invasive biomarkers for rejection monitoring including serum creatinine, proteinuria, donor-derived cell-free DNA, peripheral blood gene expression profile (PBGEP), urinary CXCL9 mRNA and de novo donor-specific antibodies (DSA). Secondary outcomes included development of anti-viral immune responses against the wild-type and Delta variant of SARS-CoV-2. Results: At a median of 85 days, no KTRs developed de novo DSAs and only one patient developed acute rejection following recent conversion to belatacept, which was associated with increased creatinine and urinary CXCL9 levels. During follow-up, there were no significant changes in proteinuria, donor-derived cell-free DNA levels or PBGEP. 36% of KTRs in our cohort developed anti-wild-type spike antibodies, 75% and 55% of whom had neutralizing responses against wild-type and Delta variants respectively. A cellular response against wild-type S1, measured by interferon-γ-ELISpot assay, developed in 38% of KTRs. Cellular responses did not differ in KTRs with or without antibody responses. Conclusions: SARS-CoV-2 mRNA vaccination in KTRs did not elicit a significant alloimmune response. About half of KTRs who develop anti-wild-type spike antibodies after two mRNA vaccine doses have neutralizing responses against the Delta variant. There was no association between anti-viral humoral and cellular responses.


Sujet(s)
Vaccin ARNm-1273 contre la COVID-19/immunologie , Vaccin BNT162/immunologie , Rejet du greffon/diagnostic , Transplantation rénale , Monitorage physiologique/méthodes , SARS-CoV-2/immunologie , Sujet âgé , Anticorps antiviraux/sang , Test ELISpot , Femelle , Humains , Immunité cellulaire , Alloanticorps/sang , Mâle , Adulte d'âge moyen , Études prospectives , Transplantation homologue , Vaccination
16.
J Am Soc Nephrol ; 32(4): 994-1004, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33658284

RÉSUMÉ

BACKGROUND: Developing a noninvasive clinical test to accurately diagnose kidney allograft rejection is critical to improve allograft outcomes. Urinary exosomes, tiny vesicles released into the urine that carry parent cells' proteins and nucleic acids, reflect the biologic function of the parent cells within the kidney, including immune cells. Their stability in urine makes them a potentially powerful tool for liquid biopsy and a noninvasive diagnostic biomarker for kidney-transplant rejection. METHODS: Using 192 of 220 urine samples with matched biopsy samples from 175 patients who underwent a clinically indicated kidney-transplant biopsy, we isolated urinary exosomal mRNAs and developed rejection signatures on the basis of differential gene expression. We used crossvalidation to assess the performance of the signatures on multiple data subsets. RESULTS: An exosomal mRNA signature discriminated between biopsy samples from patients with all-cause rejection and those with no rejection, yielding an area under the curve (AUC) of 0.93 (95% CI, 0.87 to 0.98), which is significantly better than the current standard of care (increase in eGFR AUC of 0.57; 95% CI, 0.49 to 0.65). The exosome-based signature's negative predictive value was 93.3% and its positive predictive value was 86.2%. Using the same approach, we identified an additional gene signature that discriminated patients with T cell-mediated rejection from those with antibody-mediated rejection (with an AUC of 0.87; 95% CI, 0.76 to 0.97). This signature's negative predictive value was 90.6% and its positive predictive value was 77.8%. CONCLUSIONS: Our findings show that mRNA signatures derived from urinary exosomes represent a powerful and noninvasive tool to screen for kidney allograft rejection. This finding has the potential to assist clinicians in therapeutic decision making.

17.
Nephron ; 145(3): 280-284, 2021.
Article de Anglais | MEDLINE | ID: mdl-33789316

RÉSUMÉ

CONTEXT: Chronic immunosuppression is associated with an increased risk of opportunistic infections. Although kidney transplant recipients with coronavirus disease 2019 (COVID-19) have higher mortality than the general population, data on their risk of infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are unknown. Subject of Review: A recent single-center screening study from the UK (Transplantation. 2021 Jan 1;105(1):151-7) showed that 89 (10.4%) of 855 consecutive kidney transplant recipients tested positive for SARS-CoV-2 antibodies. Risk factors for infection included a nonwhite background, diabetes, and a history of allograft rejection. Risk factors for mortality in individuals who developed COVID-19 were older age and receiving steroids. Second Opinion: This study shows that the rate of SARS-CoV-2 infection in kidney transplant recipients is similar to the one observed in the general population in the same area (13%), indicating that transplant recipients are not at increased risk of COVID-19. However, the investigators raise the interesting point that since transplant individuals were advised to shelter earlier than the general population, they may be in fact more susceptible. This statement is hard to substantiate, but the identification of specific risk factors for infection and poor outcomes is crucial to tailor strategies to prevent spread of the infection. This is particularly important, considering that kidney transplant recipients may be at increased risk of prolonged viral spread and in-host viral mutations, making them not just a particularly fragile population for COVID-19 but also a potentially major source of further contagions.


Sujet(s)
COVID-19 , Transplantation rénale , Sujet âgé , Humains , Sujet immunodéprimé , SARS-CoV-2 , Receveurs de transplantation
18.
Sci Rep ; 11(1): 6014, 2021 03 16.
Article de Anglais | MEDLINE | ID: mdl-33727573

RÉSUMÉ

New Onset Diabetes After Transplantation (NODAT) is a serious metabolic complication. While ß-cell dysfunction is considered the main contributing factor in the development of NODAT, the precise pathogenesis is not well understood. Cytokines are thought to be involved in the inflammation of islet ß-cells in diabetes; however, few studies have investigated this hypothesis in NODAT. A total of 309 kidney transplant recipients (KTRs) were included in this study. An association between kidney transplants, and the development of diabetes after transplant (NODAT) was investigated. Comparison was made between KTRs who develop diabetes (NODAT cases) or did not develop diabetes (control), using key cytokines, IL-6 G (- 174)C, macrophage mediator; IL-4 C (- 490)T, T helper (Th)-2 cytokine profile initiator; Th-1 cytokine profile initiator interferon-γ T (+ 874) A gene and TGF ß1 C (+ 869) T gene polymorphisms were investigated. The genes were amplified using well-established polymerase chain reaction (PCR) techniques in our laboratory. Compared to the AA and AT genotypes of interferon gamma (IFNG), there was a strong association between the TT genotype of IFNG and NODAT kidney transplant recipients (KTRs) versus non-NODAT KTRs (p = 0.005). The AA genotype of IFNG was found to be predominant in the control group (p = 0.004). Also, significant variations of IL6 G (- 174) C, IL-4 C (- 590) T, interferon-γ T (+ 874) A gene and transforming growth factor ß1 C (+ 869) T may contribute to NODAT. Our data is consistent with theTh-1/T-reg pathway of immunity. Further larger pan Arab studies are required to confirm our findings.


Sujet(s)
Cytokines/génétique , Diabète , Transplantation rénale , Polymorphisme de nucléotide simple , Adulte , Diabète/étiologie , Diabète/génétique , Femelle , Humains , Mâle , Adulte d'âge moyen
19.
Sci Transl Med ; 12(569)2020 11 11.
Article de Anglais | MEDLINE | ID: mdl-33177180

RÉSUMÉ

Adoptive cell transfer of ex vivo expanded regulatory T cells (Tregs) has shown immense potential in animal models of auto- and alloimmunity. However, the effective translation of such Treg therapies to the clinic has been slow. Because Treg homeostasis is known to require continuous T cell receptor (TCR) ligation and exogenous interleukin-2 (IL-2), some investigators have explored the use of low-dose IL-2 injections to increase endogenous Treg responses. Systemic IL-2 immunotherapy, however, can also lead to the activation of cytotoxic T lymphocytes and natural killer cells, causing adverse therapeutic outcomes. Here, we describe a drug delivery platform, which can be engineered to autostimulate Tregs with IL-2 in response to TCR-dependent activation, and thus activate these cells in sites of antigen encounter. To this end, protein nanogels (NGs) were synthesized with cleavable bis(N-hydroxysuccinimide) cross-linkers and IL-2/Fc fusion (IL-2) proteins to form particles that release IL-2 under reducing conditions, as found at the surface of T cells receiving stimulation through the TCR. Tregs surface-conjugated with IL-2 NGs were found to have preferential, allograft-protective effects relative to unmodified Tregs or Tregs stimulated with systemic IL-2. We demonstrate that murine and human NG-modified Tregs carrying an IL-2 cargo perform better than conventional Tregs in suppressing alloimmunity in murine and humanized mouse allotransplantation models. In all, the technology presented in this study has the potential to improve Treg transfer therapy by enabling the regulated spatiotemporal provision of IL-2 to antigen-primed Tregs.


Sujet(s)
Interleukine-2 , Lymphocytes T régulateurs , Animaux , Souris , Nanogels , Récepteurs aux antigènes des cellules T , Transduction du signal
20.
Sci Rep ; 10(1): 14249, 2020 08 28.
Article de Anglais | MEDLINE | ID: mdl-32859934

RÉSUMÉ

Solid organ transplantation is a lifesaving therapy for patients with end-organ disease. Current immunosuppression protocols are not designed to target antigen-specific alloimmunity and are uncapable of preventing chronic allograft injury. As myeloid-derived suppressor cells (MDSCs) are potent immunoregulatory cells, we tested whether donor-derived MDSCs can protect heart transplant allografts in an antigen-specific manner. C57BL/6 (H2Kb, I-Ab) recipients pre-treated with BALB/c MDSCs were transplanted with either donor-type (BALB/c, H2Kd, I-Ad) or third-party (C3H, H2Kk, I-Ak) cardiac grafts. Spleens and allografts from C57BL/6 recipients were harvested for immune phenotyping, transcriptomic profiling and functional assays. Single injection of donor-derived MDSCs significantly prolonged the fully MHC mismatched allogeneic cardiac graft survival in a donor-specific fashion. Transcriptomic analysis of allografts harvested from donor-derived MDSCs treated recipients showed down-regulated proinflammatory cytokines. Immune phenotyping showed that the donor MDSCs administration suppressed effector T cells in recipients. Interestingly, significant increase in recipient endogenous CD11b+Gr1+ MDSC population was observed in the group treated with donor-derived MDSCs compared to the control groups. Depletion of this endogenous MDSCs with anti-Gr1 antibody reversed donor MDSCs-mediated allograft protection. Furthermore, we observed that the allogeneic mixed lymphocytes reaction was suppressed in the presence of CD11b+Gr1+ MDSCs in a donor-specific manner. Donor-derived MDSCs prolong cardiac allograft survival in a donor-specific manner via induction of recipient's endogenous MDSCs.


Sujet(s)
Survie du greffon/immunologie , Transplantation cardiaque/méthodes , Cellules myéloïdes suppressives/immunologie , Allogreffes/immunologie , Animaux , Rejet du greffon/immunologie , Rejet du greffon/mortalité , Transplantation cardiaque/mortalité , Transplantation de cellules souches hématopoïétiques , Tolérance immunitaire , Immunosuppression thérapeutique/méthodes , Mâle , Souris , Souris de lignée BALB C , Souris de lignée C57BL , Cellules myéloïdes/immunologie , Cellules myéloïdes suppressives/métabolisme , Cellules myéloïdes suppressives/physiologie , Lymphocytes T/immunologie , Donneurs de tissus , Transplantation homologue
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...