Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Death Dis ; 15(6): 418, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38879508

RÉSUMÉ

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.


Sujet(s)
Tumeurs du sein , Calcium , AMP cyclique , Résistance aux médicaments antinéoplasiques , Ferroptose , ARN long non codant , Tamoxifène , Humains , Tamoxifène/pharmacologie , Tamoxifène/usage thérapeutique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Tumeurs du sein/métabolisme , Tumeurs du sein/anatomopathologie , Ferroptose/effets des médicaments et des substances chimiques , Ferroptose/génétique , Femelle , ARN long non codant/métabolisme , ARN long non codant/génétique , AMP cyclique/métabolisme , Calcium/métabolisme , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Résistance aux médicaments antinéoplasiques/génétique , Lignée cellulaire tumorale , Animaux , Récepteurs des oestrogènes/métabolisme , Souris , Espèces réactives de l'oxygène/métabolisme , Cellules MCF-7
2.
bioRxiv ; 2023 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-38496603

RÉSUMÉ

Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER+) breast cancer, constituting around 75% of all cases. However, emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance via blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of cAMP/PKA/CREB axis and increased expression of TRPC1 Ca2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels. These ultimately induce lipid peroxidation and ferroptotic cell death in combination with tamoxifen. Overexpressing PDE4D rescues LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+/ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of ferroptosis induction and tamoxifen sensitization, thereby revealing LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer.

3.
Clin Cancer Res ; 24(8): 1987-2001, 2018 04 15.
Article de Anglais | MEDLINE | ID: mdl-29386221

RÉSUMÉ

Purpose: Tamoxifen remains an important hormonal therapy for ER-positive breast cancer; however, development of resistance is a major obstacle in clinics. Here, we aimed to identify novel mechanisms of tamoxifen resistance and provide actionable drug targets overcoming resistance.Experimental Design: Whole-transcriptome sequencing, downstream pathway analysis, and drug repositioning approaches were used to identify novel modulators [here: phosphodiesterase 4D (PDE4D)] of tamoxifen resistance. Clinical data involving tamoxifen-treated patients with ER-positive breast cancer were used to assess the impact of PDE4D in tamoxifen resistance. Tamoxifen sensitization role of PDE4D was tested in vitro and in vivo Cytobiology, biochemistry, and functional genomics tools were used to elucidate the mechanisms of PDE4D-mediated tamoxifen resistance.Results: PDE4D, which hydrolyzes cyclic AMP (cAMP), was significantly overexpressed in both MCF-7 and T47D tamoxifen-resistant (TamR) cells. Higher PDE4D expression predicted worse survival in tamoxifen-treated patients with breast cancer (n = 469, P = 0.0036 for DMFS; n = 561, P = 0.0229 for RFS) and remained an independent prognostic factor for RFS in multivariate analysis (n = 132, P = 0.049). Inhibition of PDE4D by either siRNAs or pharmacologic inhibitors (dipyridamole and Gebr-7b) restored tamoxifen sensitivity. Sensitization to tamoxifen is achieved via cAMP-mediated induction of unfolded protein response/ER stress pathway leading to activation of p38/JNK signaling and apoptosis. Remarkably, acetylsalicylic acid (aspirin) was predicted to be a tamoxifen sensitizer using a drug repositioning approach and was shown to reverse resistance by targeting PDE4D/cAMP/ER stress axis. Finally, combining PDE4D inhibitors and tamoxifen suppressed tumor growth better than individual groups in vivoConclusions: PDE4D plays a pivotal role in acquired tamoxifen resistance via blocking cAMP/ER stress/p38-JNK signaling and apoptosis. Clin Cancer Res; 24(8); 1987-2001. ©2018 AACR.


Sujet(s)
Antinéoplasiques/pharmacologie , Tumeurs du sein/métabolisme , AMP cyclique/métabolisme , Cyclic Nucleotide Phosphodiesterases, Type 4/métabolisme , Résistance aux médicaments antinéoplasiques , Récepteurs des oestrogènes/métabolisme , Systèmes de seconds messagers/effets des médicaments et des substances chimiques , Tamoxifène/pharmacologie , Animaux , Antinéoplasiques/usage thérapeutique , Apoptose/effets des médicaments et des substances chimiques , Apoptose/génétique , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/génétique , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Modèles animaux de maladie humaine , Stress du réticulum endoplasmique/génétique , Femelle , Analyse de profil d'expression de gènes , Humains , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Souris , Modèles biologiques , Inhibiteurs de la phosphodiestérase-4/pharmacologie , Stress physiologique/génétique , Tamoxifène/usage thérapeutique , Tests d'activité antitumorale sur modèle de xénogreffe
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE