Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Blood ; 142(1): 62-72, 2023 07 06.
Article de Anglais | MEDLINE | ID: mdl-36796019

RÉSUMÉ

Bruton tyrosine kinase (BTK), a nonreceptor tyrosine kinase, is a major therapeutic target for B-cell-driven malignancies. However, approved covalent BTK inhibitors (cBTKis) are associated with treatment limitations because of off-target side effects, suboptimal oral pharmacology, and development of resistance mutations (eg, C481) that prevent inhibitor binding. Here, we describe the preclinical profile of pirtobrutinib, a potent, highly selective, noncovalent (reversible) BTK inhibitor. Pirtobrutinib binds BTK with an extensive network of interactions to BTK and water molecules in the adenosine triphosphate binding region and shows no direct interaction with C481. Consequently, pirtobrutinib inhibits both BTK and BTK C481 substitution mutants in enzymatic and cell-based assays with similar potencies. In differential scanning fluorimetry studies, BTK bound to pirtobrutinib exhibited a higher melting temperature than cBTKi-bound BTK. Pirtobrutinib, but not cBTKis, prevented Y551 phosphorylation in the activation loop. These data suggest that pirtobrutinib uniquely stabilizes BTK in a closed, inactive conformation. Pirtobrutinib inhibits BTK signaling and cell proliferation in multiple B-cell lymphoma cell lines, and significantly inhibits tumor growth in human lymphoma xenografts in vivo. Enzymatic profiling showed that pirtobrutinib was highly selective for BTK in >98% of the human kinome, and in follow-up cellular studies pirtobrutinib retained >100-fold selectivity over other tested kinases. Collectively, these findings suggest that pirtobrutinib represents a novel BTK inhibitor with improved selectivity and unique pharmacologic, biophysical, and structural attributes with the potential to treat B-cell-driven cancers with improved precision and tolerability. Pirtobrutinib is being tested in phase 3 clinical studies for a variety of B-cell malignancies.


Sujet(s)
Agammaglobulinaemia tyrosine kinase , Lymphomes , Agammaglobulinaemia tyrosine kinase/antagonistes et inhibiteurs , Humains , Animaux , Tests d'activité antitumorale sur modèle de xénogreffe , Lymphomes/traitement médicamenteux , Évaluation préclinique de médicament , Lignée cellulaire tumorale , Souris de lignée NOD , Mâle , Souris SCID , Conformation moléculaire , Souris
2.
Cancer Discov ; 10(1): 54-71, 2020 01.
Article de Anglais | MEDLINE | ID: mdl-31658955

RÉSUMÉ

Despite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRASG12C inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRASG12C, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRASG12C-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRASG12C-positive lung and colon adenocarcinomas. Comprehensive pharmacodynamic and pharmacogenomic profiling in sensitive and partially resistant nonclinical models identified mechanisms implicated in limiting antitumor activity including KRAS nucleotide cycling and pathways that induce feedback reactivation and/or bypass KRAS dependence. These factors included activation of receptor tyrosine kinases (RTK), bypass of KRAS dependence, and genetic dysregulation of cell cycle. Combinations of MRTX849 with agents that target RTKs, mTOR, or cell cycle demonstrated enhanced response and marked tumor regression in several tumor models, including MRTX849-refractory models. SIGNIFICANCE: The discovery of MRTX849 provides a long-awaited opportunity to selectively target KRASG12C in patients. The in-depth characterization of MRTX849 activity, elucidation of response and resistance mechanisms, and identification of effective combinations provide new insight toward KRAS dependence and the rational development of this class of agents.See related commentary by Klempner and Hata, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Sujet(s)
Acétonitriles/usage thérapeutique , Adénocarcinome pulmonaire/traitement médicamenteux , Antinéoplasiques/usage thérapeutique , Modèles animaux de maladie humaine , Tumeurs du poumon/traitement médicamenteux , Mutation , Pipérazines/usage thérapeutique , Protéines proto-oncogènes p21(ras)/antagonistes et inhibiteurs , Protéines proto-oncogènes p21(ras)/génétique , Pyrrolidines/usage thérapeutique , Adénocarcinome pulmonaire/génétique , Adénocarcinome pulmonaire/anatomopathologie , Animaux , Apoptose , Prolifération cellulaire , Essais cliniques de phase I comme sujet , Femelle , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Souris , Souris de lignée BALB C , Souris de lignée NOD , Souris nude , Souris SCID , Adulte d'âge moyen , Pronostic , Pyrimidines , Transduction du signal , Cellules cancéreuses en culture , Tests d'activité antitumorale sur modèle de xénogreffe
3.
Biochemistry ; 48(11): 2559-68, 2009 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-19209850

RÉSUMÉ

The protease activity of hepatitis C virus nonstructural protein 3 (NS3) is essential for viral replication. ITMN-191, a macrocyclic inhibitor of the NS3 protease active site, promotes rapid, multilog viral load reductions in chronic HCV patients. Here, ITMN-191 is shown to be a potent inhibitor of NS3 with a two-step binding mechanism. Progress curves are consistent with the formation of an initial collision complex (EI) that isomerizes to a highly stable complex (EI*) from which ITMN-191 dissociates very slowly. K(i), the dissociation constant of EI, is 100 nM, and the rate constant for conversion of EI to EI* is 6.2 x 10(-2) s(-1). Binding experiments using protein fluorescence confirm this isomerization rate. From progress curve analysis, the rate constant for dissociation of ITMN-191 from the EI* complex is 3.8 x 10(-5) s(-1) with a calculated complex half-life of approximately 5 h and a true biochemical potency (K(i)*) of approximately 62 pM. Surface plasmon resonance studies and assessment of enzyme reactivation following dilution of the EI* complex confirm slow dissociation and suggest that the half-life may be considerably longer. Abrogation of the tight binding and slow dissociative properties of ITMN-191 is observed with proteases that carry the R155K or D168A substitution, each of which is likely in drug resistant mutants. Slow dissociation is not observed with closely related macrocyclic inhibitors of NS3, suggesting that members of this class may display distinct binding kinetics.


Sujet(s)
Hepacivirus/enzymologie , Inhibiteurs de protéases/composition chimique , Protéines virales non structurales/antagonistes et inhibiteurs , Protéines virales non structurales/composition chimique , Substitution d'acide aminé , Hepacivirus/composition chimique , Hepacivirus/génétique , Cinétique , Inhibiteurs de protéases/synthèse chimique , Liaison aux protéines , Protéines virales non structurales/génétique , Protéines virales non structurales/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE