Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 40
Filtrer
1.
Nat Metab ; 6(2): 304-322, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38337096

RÉSUMÉ

Skeletal muscle is dynamically controlled by the balance of protein synthesis and degradation. Here we discover an unexpected function for the transcriptional repressor B cell lymphoma 6 (BCL6) in muscle proteostasis and strength in mice. Skeletal muscle-specific Bcl6 ablation in utero or in adult mice results in over 30% decreased muscle mass and force production due to reduced protein synthesis and increased autophagy, while it promotes a shift to a slower myosin heavy chain fibre profile. Ribosome profiling reveals reduced overall translation efficiency in Bcl6-ablated muscles. Mechanistically, tandem chromatin immunoprecipitation, transcriptomic and translational analyses identify direct BCL6 repression of eukaryotic translation initiation factor 4E-binding protein 1 (Eif4ebp1) and activation of insulin-like growth factor 1 (Igf1) and androgen receptor (Ar). Together, these results uncover a bifunctional role for BCL6 in the transcriptional and translational control of muscle proteostasis.


Sujet(s)
Homéostasie protéique , Protéines proto-oncogènes c-bcl-6 , Facteurs de transcription , Animaux , Souris , Immunoprécipitation de la chromatine , Muscles squelettiques/métabolisme , Facteurs de transcription/métabolisme , Protéines proto-oncogènes c-bcl-6/génétique
2.
J Exp Med ; 219(5)2022 05 02.
Article de Anglais | MEDLINE | ID: mdl-35363257

RÉSUMÉ

The fat-muscle communication regulates metabolism and involves circulating signals like adiponectin. Modulation of this cross-talk could benefit muscle bioenergetics and exercise tolerance in conditions like obesity. Chronic daily intake of exogenous glucocorticoids produces or exacerbates metabolic stress, often leading to obesity. In stark contrast to the daily intake, we discovered that intermittent pulses of glucocorticoids improve dystrophic muscle metabolism. However, the underlying mechanisms, particularly in the context of obesity, are still largely unknown. Here we report that in mice with diet-induced obesity, intermittent once-weekly prednisone increased total and high-molecular weight adiponectin levels and improved exercise tolerance and energy expenditure. These effects were dependent upon adiponectin, as shown by genetic ablation of the adipokine. Upregulation of Adipoq occurred through the glucocorticoid receptor (GR), as this effect was blocked by inducible GR ablation in adipocytes. The treatment increased the muscle metabolic response of adiponectin through the CAMKK2-AMPK cascade. Our study demonstrates that intermittent glucocorticoids produce healthful metabolic remodeling in diet-induced obesity.


Sujet(s)
Adiponectine , Tolérance à l'effort , Adipocytes/métabolisme , Adiponectine/génétique , Animaux , Souris , Obésité/métabolisme , Prednisone/pharmacologie
3.
Nat Metab ; 3(12): 1621-1632, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34903884

RÉSUMÉ

In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+, a cosubstrate of the class III histone deacetylase sirtuin 1 (SIRT1) that associates with clock transcription factors. Although NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during night-time display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by brain and muscle Arnt-like protein 1 (BMAL1) and peroxisome proliferator-activated receptor alpha (PPARα) and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.


Sujet(s)
Métabolisme énergétique , Jeûne , NAD/métabolisme , Sirtuine-1/génétique , Sirtuine-1/métabolisme , Transcription génétique , Acides aminés/métabolisme , Animaux , Température du corps , Rythme circadien , Régime alimentaire , Acides gras/métabolisme , Régulation de l'expression des gènes , Foie/métabolisme , Souris , Facteurs de transcription
4.
Cell Rep ; 34(13): 108927, 2021 03 30.
Article de Anglais | MEDLINE | ID: mdl-33789109

RÉSUMÉ

Understanding the epigenomic evolution and specificity of disease subtypes from complex patient data remains a major biomedical problem. We here present DeCET (decomposition and classification of epigenomic tensors), an integrative computational approach for simultaneously analyzing hierarchical heterogeneous data, to identify robust epigenomic differences among tissue types, differentiation states, and disease subtypes. Applying DeCET to our own data from 21 uterine benign tumor (leiomyoma) patients identifies distinct epigenomic features discriminating normal myometrium and leiomyoma subtypes. Leiomyomas possess preponderant alterations in distal enhancers and long-range histone modifications confined to chromatin contact domains that constrain the evolution of pathological epigenomes. Moreover, we demonstrate the power and advantage of DeCET on multiple publicly available epigenomic datasets representing different cancers and cellular states. Epigenomic features extracted by DeCET can thus help improve our understanding of disease states, cellular development, and differentiation, thereby facilitating future therapeutic, diagnostic, and prognostic strategies.


Sujet(s)
Épigénome , Léiomyome/classification , Léiomyome/génétique , Tumeurs de l'utérus/classification , Tumeurs de l'utérus/génétique , Différenciation cellulaire/génétique , Chromatine/métabolisme , Analyse de regroupements , Éléments activateurs (génétique)/génétique , Épigenèse génétique , Matrice extracellulaire/métabolisme , Femelle , Régulation de l'expression des gènes tumoraux , Gènes homéotiques , Cellules HEK293 , Humains , Léiomyome/anatomopathologie , Myomètre/anatomopathologie , Motifs nucléotidiques/génétique , Facteurs de transcription/métabolisme , Tumeurs de l'utérus/anatomopathologie
5.
JCI Insight ; 4(24)2019 12 19.
Article de Anglais | MEDLINE | ID: mdl-31852847

RÉSUMÉ

In humans, chronic glucocorticoid use is associated with side effects like muscle wasting, obesity, and metabolic syndrome. Intermittent steroid dosing has been proposed in Duchenne Muscular Dystrophy patients to mitigate the side effects seen with daily steroid intake. We evaluated biomarkers from Duchenne Muscular Dystrophy patients, finding that, compared with chronic daily steroid use, weekend steroid use was associated with reduced serum insulin, free fatty acids, and branched chain amino acids, as well as reduction in fat mass despite having similar BMIs. We reasoned that intermittent prednisone administration in dystrophic mice would alter muscle epigenomic signatures, and we identified the coordinated action of the glucocorticoid receptor, KLF15 and MEF2C as mediators of a gene expression program driving metabolic reprogramming and enhanced nutrient utilization. Muscle lacking Klf15 failed to respond to intermittent steroids. Furthermore, coadministration of the histone acetyltransferase inhibitor anacardic acid with steroids in mdx mice eliminated steroid-specific epigenetic marks and abrogated the steroid response. Together, these findings indicate that intermittent, repeated exposure to glucocorticoids promotes performance in dystrophic muscle through an epigenetic program that enhances nutrient utilization.


Sujet(s)
Glucocorticoïdes/administration et posologie , Muscles squelettiques/effets des médicaments et des substances chimiques , Myopathie de Duchenne/traitement médicamenteux , Prednisone/administration et posologie , Acides anacardiques/administration et posologie , Animaux , Marqueurs biologiques/sang , Marqueurs biologiques/métabolisme , Enfant , Études transversales , Modèles animaux de maladie humaine , Association de médicaments , Épigenèse génétique/effets des médicaments et des substances chimiques , Épigénomique , Régulation de l'expression des gènes/effets des médicaments et des substances chimiques , Histone acetyltransferases/antagonistes et inhibiteurs , Histone acetyltransferases/métabolisme , Humains , Facteurs de transcription Krüppel-like/génétique , Facteurs de transcription Krüppel-like/métabolisme , Facteurs de transcription MEF2/métabolisme , Mâle , Métabolomique , Souris , Souris de lignée mdx , Muscles squelettiques/métabolisme , Muscles squelettiques/anatomopathologie , Myopathie de Duchenne/sang , Myopathie de Duchenne/diagnostic , Myopathie de Duchenne/génétique , Nutriments/sang , Nutriments/métabolisme , Pharmacothérapie administrée en bolus
6.
PLoS Biol ; 17(10): e3000467, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31589602

RÉSUMÉ

Skeletal muscles consist of fibers of differing metabolic activities and contractility, which become remodeled in response to chronic exercise, but the epigenomic basis for muscle identity and adaptation remains poorly understood. Here, we used chromatin immunoprecipitation sequencing of dimethylated histone 3 lysine 4 and acetylated histone 3 lysine 27 as well as transposase-accessible chromatin profiling to dissect cis-regulatory networks across muscle groups. We demonstrate that in vivo enhancers specify muscles in accordance with myofiber composition, show little resemblance to cultured myotube enhancers, and identify glycolytic and oxidative muscle-specific regulators. Moreover, we find that voluntary wheel running and muscle-specific peroxisome proliferator-activated receptor gamma coactivator-1 alpha (Pgc1a) transgenic (mTg) overexpression, which stimulate endurance performance in mice, result in markedly different changes to the epigenome. Exercise predominantly leads to enhancer hypoacetylation, whereas mTg causes hyperacetylation at different sites. Integrative analysis of regulatory regions and gene expression revealed that exercise and mTg are each associated with myocyte enhancer factor (MEF) 2 and estrogen-related receptor (ERR) signaling and transcription of genes promoting oxidative metabolism. However, exercise was additionally associated with regulation by retinoid X receptor (RXR), jun proto-oncogene (JUN), sine oculis homeobox factor (SIX), and other factors. Overall, our work defines the unique enhancer repertoires of skeletal muscles in vivo and reveals that divergent exercise-induced or PGC1α-driven epigenomic programs direct partially convergent transcriptional networks.


Sujet(s)
Épigenèse génétique , Histone/génétique , Cellules musculaires/métabolisme , Muscles squelettiques/métabolisme , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/génétique , Conditionnement physique d'animal , Acétylation , Animaux , Reprogrammation cellulaire , Chromatine/composition chimique , Chromatine/métabolisme , Éléments activateurs (génétique) , Glycolyse/génétique , Histone/métabolisme , Protéines à homéodomaine/génétique , Protéines à homéodomaine/métabolisme , Facteurs de transcription MEF2/génétique , Facteurs de transcription MEF2/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Cellules musculaires/cytologie , Muscles squelettiques/cytologie , Phosphorylation oxydative , Coactivateur 1-alpha du récepteur gamma activé par les proliférateurs de peroxysomes/métabolisme , Protéines proto-oncogènes c-jun/génétique , Protéines proto-oncogènes c-jun/métabolisme , Récepteurs des oestrogènes/génétique , Récepteurs des oestrogènes/métabolisme , Récepteurs X des rétinoïdes/génétique , Récepteurs X des rétinoïdes/métabolisme , Transduction du signal ,
7.
Elife ; 82019 04 15.
Article de Anglais | MEDLINE | ID: mdl-30983568

RÉSUMÉ

Transcription is tightly regulated to maintain energy homeostasis during periods of feeding or fasting, but the molecular factors that control these alternating gene programs are incompletely understood. Here, we find that the B cell lymphoma 6 (BCL6) repressor is enriched in the fed state and converges genome-wide with PPARα to potently suppress the induction of fasting transcription. Deletion of hepatocyte Bcl6 enhances lipid catabolism and ameliorates high-fat-diet-induced steatosis. In Ppara-null mice, hepatocyte Bcl6 ablation restores enhancer activity at PPARα-dependent genes and overcomes defective fasting-induced fatty acid oxidation and lipid accumulation. Together, these findings identify BCL6 as a negative regulator of oxidative metabolism and reveal that alternating recruitment of repressive and activating transcription factors to shared cis-regulatory regions dictates hepatic lipid handling.


Sujet(s)
Jeûne , Stéatose hépatique/physiopathologie , Régulation de l'expression des gènes , Foie/physiologie , Protéines proto-oncogènes c-bcl-6/métabolisme , Animaux , Délétion de gène , Métabolisme lipidique , Souris , Protéines proto-oncogènes c-bcl-6/déficit
8.
Cell Rep ; 25(12): 3283-3298.e6, 2018 12 18.
Article de Anglais | MEDLINE | ID: mdl-30566857

RÉSUMÉ

Accumulation of visceral adiposity is directly linked to the morbidity of obesity, while subcutaneous body fat is considered more benign. We have identified an unexpected role for B cell lymphoma 6 (BCL6), a critical regulator of immunity, in the developmental expansion of subcutaneous adipose tissue. In adipocyte-specific knockout mice (Bcl6AKO), we found that Bcl6 deletion results in strikingly increased inguinal, but not perigonadal, adipocyte size and tissue mass in addition to marked insulin sensitivity. Genome-wide RNA expression and DNA binding analyses revealed that BCL6 controls gene networks involved in cell growth and fatty acid biosynthesis. Using deuterium label incorporation and comprehensive adipokine and lipid profiling, we discovered that ablation of adipocyte Bcl6 enhances subcutaneous adipocyte lipogenesis, increases levels of adiponectin and fatty acid esters of hydroxy fatty acids (FAHFAs), and prevents steatosis. Thus, our studies identify BCL6 as a negative regulator of subcutaneous adipose tissue expansion and metabolic health.


Sujet(s)
Insulinorésistance , Obésité/génétique , Obésité/anatomopathologie , Protéines proto-oncogènes c-bcl-6/métabolisme , Transcription génétique , Cellules 3T3-L1 , Adipocytes/cytologie , Adipocytes/métabolisme , Adiponectine/sang , Tissu adipeux brun/métabolisme , Adiposité , Animaux , Différenciation cellulaire/génétique , ADN/métabolisme , Alimentation riche en graisse , Stéatose hépatique/anatomopathologie , Foetus/métabolisme , Régulation de l'expression des gènes , Humains , Inflammation/anatomopathologie , Insuline/métabolisme , Insulinorésistance/génétique , Lipides/biosynthèse , Lipogenèse/génétique , Mâle , Souris , Souris knockout , Obésité/sang , Liaison aux protéines , Protéines proto-oncogènes c-bcl-6/déficit , Transduction du signal , Graisse sous-cutanée/métabolisme
9.
Genes Dev ; 32(21-22): 1367-1379, 2018 11 01.
Article de Anglais | MEDLINE | ID: mdl-30366905

RÉSUMÉ

The mammalian circadian clock is encoded by an autoregulatory transcription feedback loop that drives rhythmic behavior and gene expression in the brain and peripheral tissues. Transcriptomic analyses indicate cell type-specific effects of circadian cycles on rhythmic physiology, although how clock cycles respond to environmental stimuli remains incompletely understood. Here, we show that activation of the inducible transcription factor NF-κB in response to inflammatory stimuli leads to marked inhibition of clock repressors, including the Period, Cryptochrome, and Rev-erb genes, within the negative limb. Furthermore, activation of NF-κB relocalizes the clock components CLOCK/BMAL1 genome-wide to sites convergent with those bound by NF-κB, marked by acetylated H3K27, and enriched in RNA polymerase II. Abrogation of NF-κB during adulthood alters the expression of clock repressors, disrupts clock-controlled gene cycles, and impairs rhythmic activity behavior, revealing a role for NF-κB in both unstimulated and activated conditions. Together, these data highlight NF-κB-mediated transcriptional repression of the clock feedback limb as a cause of circadian disruption in response to inflammation.


Sujet(s)
Rythme circadien/génétique , Facteur de transcription NF-kappa B/physiologie , Facteurs de transcription ARNTL/métabolisme , Animaux , Comportement animal , Protéines CLOCK/métabolisme , Lignée cellulaire , Chromatine/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Facteur de transcription NF-kappa B/métabolisme , Protéines de répression/métabolisme , Transcription génétique
10.
Proc Natl Acad Sci U S A ; 115(21): E4910-E4919, 2018 05 22.
Article de Anglais | MEDLINE | ID: mdl-29735694

RÉSUMÉ

Mitochondrial dysfunction is increasingly recognized as a critical determinant of both hereditary and acquired kidney diseases. However, it remains poorly understood how mitochondrial metabolism is regulated to support normal kidney function and how its dysregulation contributes to kidney disease. Here, we show that the nuclear receptor estrogen-related receptor gamma (ERRγ) and hepatocyte nuclear factor 1 beta (HNF1ß) link renal mitochondrial and reabsorptive functions through coordinated epigenomic programs. ERRγ directly regulates mitochondrial metabolism but cooperatively controls renal reabsorption via convergent binding with HNF1ß. Deletion of ERRγ in renal epithelial cells (RECs), in which it is highly and specifically expressed, results in severe renal energetic and reabsorptive dysfunction and progressive renal failure that recapitulates phenotypes of animals and patients with HNF1ß loss-of-function gene mutations. Moreover, ERRγ expression positively correlates with renal function and is decreased in patients with chronic kidney disease (CKD). REC-ERRγ KO mice share highly overlapping renal transcriptional signatures with human patients with CKD. Together these findings reveal a role for ERRγ in directing independent and HNF1ß-integrated programs for energy production and use essential for normal renal function and the prevention of kidney disease.


Sujet(s)
Kystes/prévention et contrôle , Métabolisme énergétique , Épigénomique , Régulation de l'expression des gènes , Facteur nucléaire hépatocytaire HNF-1 bêta/génétique , Récepteurs des oestrogènes/génétique , Insuffisance rénale chronique/prévention et contrôle , Animaux , Kystes/métabolisme , Kystes/anatomopathologie , Facteur nucléaire hépatocytaire HNF-1 bêta/métabolisme , Facteur nucléaire hépatocytaire HNF-1 bêta/physiologie , Humains , Rein/métabolisme , Rein/anatomopathologie , Souris , Souris knockout , Mitochondries/métabolisme , Mitochondries/anatomopathologie , Régions promotrices (génétique) , Récepteurs des oestrogènes/métabolisme , Récepteurs des oestrogènes/physiologie , Insuffisance rénale chronique/métabolisme , Insuffisance rénale chronique/anatomopathologie
11.
Cell ; 165(1): 165-179, 2016 Mar 24.
Article de Anglais | MEDLINE | ID: mdl-26924576

RÉSUMÉ

Much has been learned about transcriptional cascades and networks from large-scale systems analyses of high-throughput datasets. However, analysis methods that optimize statistical power through simultaneous evaluation of thousands of ChIP-seq peaks or differentially expressed genes possess substantial limitations in their ability to uncover mechanistic principles of transcriptional control. By examining nascent transcript RNA-seq, ChIP-seq, and binding motif datasets from lipid A-stimulated macrophages with increased attention to the quantitative distribution of signals, we identified unexpected relationships between the in vivo binding properties of inducible transcription factors, motif strength, and transcription. Furthermore, rather than emphasizing common features of large clusters of co-regulated genes, our results highlight the extent to which unique mechanisms regulate individual genes with key biological functions. Our findings demonstrate the mechanistic value of stringent interrogation of well-defined sets of genes as a complement to broader systems analyses of transcriptional cascades and networks.


Sujet(s)
Réseaux de régulation génique , Inflammation/génétique , Inflammation/immunologie , Animaux , Lipide A/immunologie , Macrophages/immunologie , Macrophages/métabolisme , Souris , Souris de lignée C57BL , Facteur de transcription NF-kappa B/métabolisme , Récepteur à l'interféron alpha-bêta/métabolisme , Facteur de réponse au sérum/métabolisme
12.
Science ; 350(6261): aac4250, 2015 Nov 06.
Article de Anglais | MEDLINE | ID: mdl-26542580

RÉSUMÉ

The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic ß cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that ß cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.


Sujet(s)
Rythme circadien/génétique , Éléments activateurs (génétique)/physiologie , Régulation de l'expression des gènes , Cellules à insuline/métabolisme , Insuline/métabolisme , Facteurs de transcription ARNTL/génétique , Facteurs de transcription ARNTL/métabolisme , Animaux , Protéines CLOCK/métabolisme , Diabète de type 2/génétique , Diabète de type 2/métabolisme , Exocytose/génétique , Intolérance au glucose , Protéines à homéodomaine/métabolisme , Humains , Sécrétion d'insuline , Foie/métabolisme , Mâle , Souris , Souris de lignée C57BL , Transactivateurs/métabolisme , Transcription génétique
13.
Cell Metab ; 21(4): 628-36, 2015 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-25863252

RÉSUMÉ

Neurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRγ) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRγ(-/-) neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRγ(-/-) hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRγ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRγ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRγ in the metabolic adaptations required for memory formation.


Sujet(s)
Hippocampe/physiologie , Potentialisation à long terme/physiologie , Mitochondries/métabolisme , Neurones/métabolisme , Récepteurs des oestrogènes/métabolisme , Analyse de variance , Animaux , Immunoprécipitation de la chromatine , Galactoside , Techniques de knock-out de gènes , Glycolyse/physiologie , Hippocampe/métabolisme , Indoles , Mémoire/physiologie , Souris , Analyse sur microréseau , Acide pyruvique , Réaction de polymérisation en chaine en temps réel , Apprentissage spatial/physiologie
14.
FASEB J ; 29(2): 636-49, 2015 Feb.
Article de Anglais | MEDLINE | ID: mdl-25392268

RÉSUMÉ

Adiponectin (APN), a pleiotropic adipokine that exerts anti-inflammatory, antidiabetic, and antiatherogenic effects through its receptors (AdipoRs), AdipoR1 and AdipoR2, is an important therapeutic target. Factors regulating AdipoR expression in monocyte/macrophages are poorly understood, and the significance of polarized macrophage activation in controlling AdipoR expression and the APN-mediated inflammatory response has not been investigated. The aim of this study was to investigate whether the macrophage polarization phenotype controls the AdipoR expression and APN-mediated inflammatory response. With the use of mouse bone marrow and peritoneal macrophages, we demonstrate that classical activation (M1) of macrophages suppressed (40-60% of control) AdipoR expression, whereas alternative activation (M2) preserved it. Remarkably, the macrophage polarization phenotypes produced contrasting inflammatory responses to APN (EC50 5 µg/ml). In M1 macrophages, APN induced proinflammatory cytokines, TNF-α, IL-6, and IL-12 (>10-fold of control) and AdipoR levels. In contrast, in M2 macrophages, APN induced the anti-inflammatory cytokine IL-10 without altering AdipoR expression. Furthermore, M1 macrophages adapt to a cytokine environment by reversing AdipoR expression. APN induced AdipoR mRNA and protein expression by up-regulating liver X receptor-α (LXRα) in macrophages. These results provide the first evidence that macrophage polarization is a key determinant regulating AdipoR expression and differential APN-mediated macrophage inflammatory responses, which can profoundly influence their pathogenic role in inflammatory and metabolic disorders.


Sujet(s)
Adiponectine/métabolisme , Macrophages/cytologie , Récepteurs à l'adiponectine/métabolisme , Animaux , Athérosclérose , Lignée cellulaire , Cytokines/métabolisme , Régulation de l'expression des gènes , Humains , Inflammation , Insulinorésistance , Interleukine-10/métabolisme , Récepteurs hépatiques X , Macrophages/métabolisme , Mâle , Souris , Souris de lignée C57BL , Monocytes/cytologie , Récepteurs nucléaires orphelins/métabolisme , Phénotype
15.
Mol Cell ; 54(4): 613-25, 2014 May 22.
Article de Anglais | MEDLINE | ID: mdl-24793694

RÉSUMÉ

Upon androgen stimulation, PKN1-mediated histone H3 threonine 11 phosphorylation (H3T11P) promotes AR target gene activation. However, the underlying mechanism is not completely understood. Here, we show that WDR5, a subunit of the SET1/MLL complex, interacts with H3T11P, and this interaction facilitates the recruitment of the MLL1 complex and subsequent H3K4 tri-methylation (H3K4me3). Using ChIP-seq, we find that androgen stimulation results in a 6-fold increase in the number of H3T11P-marked regions and induces WDR5 colocalization to one third of H3T11P-enriched promoters, thus establishing a genome-wide relationship between H3T11P and recruitment of WDR5. Accordingly, PKN1 knockdown or chemical inhibition severely blocks WDR5 chromatin association and H3K4me3 on AR target genes. Finally, WDR5 is critical in prostate cancer cell proliferation and is hyperexpressed in human prostate cancers. Together, these results identify WDR5 as a critical epigenomic integrator of histone phosphorylation and methylation and as a major driver of androgen-dependent prostate cancer cell proliferation.


Sujet(s)
Androgènes/métabolisme , Histone-lysine N-methyltransferase/métabolisme , Histone/métabolisme , Lysine/métabolisme , Protéine de la leucémie myéloïde-lymphoïde/métabolisme , Tumeurs de la prostate/métabolisme , Protéine kinase C/métabolisme , Récepteurs aux androgènes/métabolisme , Thréonine/métabolisme , Lignée cellulaire tumorale , Prolifération cellulaire , Chromatine/métabolisme , Épigenèse génétique , Régulation de l'expression des gènes tumoraux , Techniques de knock-down de gènes , Cellules HeLa , Histone-lysine N-methyltransferase/génétique , Histone/génétique , Humains , Protéines et peptides de signalisation intracellulaire , Mâle , Méthylation , Protéine de la leucémie myéloïde-lymphoïde/génétique , Phosphorylation , Tumeurs de la prostate/génétique , Tumeurs de la prostate/anatomopathologie , Protéine kinase C/génétique , Récepteurs aux androgènes/génétique , Transduction du signal , Thréonine/génétique
16.
PLoS One ; 9(1): e86404, 2014.
Article de Anglais | MEDLINE | ID: mdl-24466075

RÉSUMÉ

Adiponectin (APN), an adipocytokine produced by adipose tissue, exerts pleiotropic actions regulating inflammation, metabolism and vascular homeostasis. APN levels are inversely correlated with obesity, type-2 diabetes, hypertension and cardiovascular disease. Although renin angiotensin system (RAS) activation in these interrelated metabolic syndrome components increases angiotensin II (AngII) levels leading to vascular damage, it is unknown whether APN under these conditions provides atheroprotection. We investigated whether increasing plasma APN provides atheroprotection in a hypertensive and accelerated atherosclerosis model. Using adenoviral gene transfer, sustained APN expression increased plasma levels of total and high-molecular weight APN, leading to a significant elevation of plasma HDL-cholesterol (HDL-C). Elevated APN levels were strongly atheroprotective, yet had no impact on blood pressure. Notably, gene expression analyses revealed that APN significantly inhibited the expression of pro-inflammatory and atherogenic genes while it increased the expression of the anti-inflammatory cytokine, IL-10 and the cholesterol efflux transporters, ABCA1 and ABCG1 in the artery wall. These findings suggest that increasing APN levels may be an effective therapeutic strategy to inhibit vascular inflammation and accelerated atherosclerosis associated with RAS activation in the metabolic syndrome.


Sujet(s)
Adiponectine/génétique , Angiotensine-II/métabolisme , Athérosclérose/génétique , Athérosclérose/métabolisme , Expression des gènes , Inflammation/génétique , Inflammation/métabolisme , Adiponectine/sang , Adiponectine/composition chimique , Adiponectine/métabolisme , Angiotensine-II/effets indésirables , Animaux , Apolipoprotéines/génétique , Apolipoprotéines/métabolisme , Athérosclérose/anatomopathologie , Pression sanguine/génétique , Cholestérol/métabolisme , Modèles animaux de maladie humaine , Hypertension artérielle/induit chimiquement , Hypertension artérielle/génétique , Hypertension artérielle/métabolisme , Foie/métabolisme , Macrophages/immunologie , Macrophages/métabolisme , Mâle , Souris , Souris knockout , Multimérisation de protéines , Transport des protéines , Récepteurs à l'adiponectine/génétique , Récepteurs à l'adiponectine/métabolisme , Récepteurs aux lipoprotéines LDL/génétique , Récepteurs éboueurs/génétique , Récepteurs éboueurs/métabolisme
17.
Proc Natl Acad Sci U S A ; 110(47): 18820-5, 2013 Nov 19.
Article de Anglais | MEDLINE | ID: mdl-24191050

RÉSUMÉ

Molecular targeting of the two receptor interaction domains of the epigenetic repressor silencing mediator of retinoid and thyroid hormone receptors (SMRT(mRID)) produced a transplantable skeletal syndrome that reduced radial bone growth, increased numbers of bone-resorbing periosteal osteoclasts, and increased bone fracture risk. Furthermore, SMRT(mRID) mice develop spontaneous primary myelofibrosis, a chronic, usually idiopathic disorder characterized by progressive bone marrow fibrosis. Frequently linked to polycythemia vera and chronic myeloid leukemia, myelofibrosis displays high patient morbidity and mortality, and current treatment is mostly palliative. To decipher the etiology of this disease, we identified the thrombopoietin (Tpo) gene as a target of the SMRT-retinoic acid receptor signaling pathway in bone marrow stromal cells. Chronic induction of Tpo in SMRT(mRID) mice results in up-regulation of TGF-ß and PDGF in megakaryocytes, uncontrolled proliferation of bone marrow reticular cells, and fibrosis of the marrow compartment. Of therapeutic relevance, we show that this syndrome can be rescued by retinoid antagonists, demonstrating that the physical interface between SMRT and retinoic acid receptor can be a potential therapeutic target to block primary myelofibrosis disease progression.


Sujet(s)
Moelle osseuse/métabolisme , Cytokines/métabolisme , Répression épigénétique/physiologie , Corépresseur-2 de récepteur nucléaire/antagonistes et inhibiteurs , Myélofibrose primitive/traitement médicamenteux , Transduction du signal/physiologie , Thrombopoïétine/génétique , Phosphatase alcaline/sang , Animaux , Benzothiazoles , Calcium/sang , Prolifération cellulaire/effets des médicaments et des substances chimiques , Amorces ADN/génétique , Diamines , Test ELISA , Analyse de profil d'expression de gènes , Techniques de knock-in de gènes , Luciferases , Mégacaryocytes/métabolisme , Souris , Corépresseur-2 de récepteur nucléaire/génétique , Composés chimiques organiques , Facteur de croissance dérivé des plaquettes/métabolisme , Réaction de polymérisation en chaîne , Myélofibrose primitive/étiologie , Quinoléines , Thrombopoïétine/biosynthèse , Facteur de croissance transformant bêta/métabolisme
18.
Methods Mol Biol ; 1027: 327-42, 2013.
Article de Anglais | MEDLINE | ID: mdl-23912994

RÉSUMÉ

Recent studies have elucidated molecular mechanisms underlying the transcriptional control of metabolism in complex metabolic disorders such as metabolic syndrome and atherosclerosis. Chromatin immunoprecipitation (ChIP) is an important technique to study protein-DNA interactions in vivo. Chemical cross-linking of DNA and its associated proteins, followed by chromatin shearing, immunoprecipitation of a protein of interest, DNA isolation, and PCR interrogation, can identify specific interactions between protein and DNA or sites of histone epigenetic alteration. Transcription factors and epigenetic modifications are key determinants of transcription. Accordingly, ChIP experiments can provide powerful mechanistic insights to understand gene expression.


Sujet(s)
Athérosclérose/métabolisme , Immunoprécipitation de la chromatine/méthodes , Protéines de liaison à l'ADN/isolement et purification , Syndrome métabolique X/métabolisme , Athérosclérose/anatomopathologie , Chromatine , Épigenèse génétique , Régulation de l'expression des gènes , Histone/génétique , Humains , Syndrome métabolique X/anatomopathologie , Réaction de polymérisation en chaîne , Facteurs de transcription/génétique
19.
Cell ; 153(3): 601-13, 2013 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-23622244

RÉSUMÉ

Liver fibrosis is a reversible wound-healing response involving TGFß1/SMAD activation of hepatic stellate cells (HSCs). It results from excessive deposition of extracellular matrix components and can lead to impairment of liver function. Here, we show that vitamin D receptor (VDR) ligands inhibit HSC activation by TGFß1 and abrogate liver fibrosis, whereas Vdr knockout mice spontaneously develop hepatic fibrosis. Mechanistically, we show that TGFß1 signaling causes a redistribution of genome-wide VDR-binding sites (VDR cistrome) in HSCs and facilitates VDR binding at SMAD3 profibrotic target genes via TGFß1-dependent chromatin remodeling. In the presence of VDR ligands, VDR binding to the coregulated genes reduces SMAD3 occupancy at these sites, inhibiting fibrosis. These results reveal an intersecting VDR/SMAD genomic circuit that regulates hepatic fibrogenesis and define a role for VDR as an endocrine checkpoint to modulate the wound-healing response in liver. Furthermore, the findings suggest VDR ligands as a potential therapy for liver fibrosis.


Sujet(s)
Réseaux de régulation génique , Foie/métabolisme , Foie/anatomopathologie , Récepteur calcitriol/métabolisme , Transduction du signal , Animaux , Calcitriol/analogues et dérivés , Fibrose/prévention et contrôle , Étude d'association pangénomique , Cellules étoilées du foie , Foie/traumatismes , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Rats , Récepteur calcitriol/agonistes , Protéine Smad-3/métabolisme , Transcriptome , Facteur de croissance transformant bêta-1/métabolisme
20.
Innate Immun ; 19(1): 20-9, 2013 Feb.
Article de Anglais | MEDLINE | ID: mdl-22637968

RÉSUMÉ

Signaling through MyD88, an adaptor utilized by all TLRs except TLR3, is pro-atherogenic; however, it is unknown whether signaling through TIR-domain-containing adaptor-inducing interferon-ß (TRIF), an adaptor used only by TLRs 3 and 4, is relevant to atherosclerosis. We determined that the TRIF(Lps2) lack-of-function mutation was atheroprotective in hyperlipidemic low density lipoprotein (LDL) receptor knockout (LDLr(-/-)) mice. LDLr(-/-) mice were crossed with either TRIF(Lps2) or TLR3 knockout mice. After feeding an atherogenic diet for 10-15 wks, atherosclerotic lesions in the heart sinus and aorta were quantitated. LDLr(-/-) mice with TRIF(Lps2) were significantly protected from atherosclerosis. TRIF(Lps2) led to a reduction in cytokines secreted from peritoneal macrophages (M) in response to hyperlipidemia. Moreover, heart sinus valves from hyperlipidemic LDLr(-/-) TRIF(Lps2) mice had significantly fewer lesional M. However, LDLr(-/-) mice deficient in TLR3 showed some enhancement of disease. Collectively, these data suggest that hyperlipidemia resulting in endogenous activation of the TRIF signaling pathway from TLR4 leads to pro-atherogenic events.


Sujet(s)
Protéines adaptatrices du transport vésiculaire/métabolisme , Athérosclérose/génétique , Hyperlipidémies/génétique , Lipoprotéines LDL/métabolisme , Récepteur de type Toll-3/métabolisme , Protéines adaptatrices du transport vésiculaire/génétique , Animaux , Aorte/anatomopathologie , Athérosclérose/étiologie , Athérosclérose/anatomopathologie , Athérosclérose/prévention et contrôle , Vaisseaux coronaires/anatomopathologie , Cytokines/immunologie , Régime athérogène , Hyperlipidémies/complications , Hyperlipidémies/anatomopathologie , Lipoprotéines LDL/génétique , Macrophages péritonéaux/immunologie , Souris , Souris de lignée C57BL , Souris knockout , Souches mutantes de souris , Mutation/génétique , Facteur de différenciation myéloïde-88/métabolisme , Transduction du signal/génétique , Récepteur de type Toll-3/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...