Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
2.
Nat Med ; 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38789645

RÉSUMÉ

Predicting distant recurrence of endometrial cancer (EC) is crucial for personalized adjuvant treatment. The current gold standard of combined pathological and molecular profiling is costly, hampering implementation. Here we developed HECTOR (histopathology-based endometrial cancer tailored outcome risk), a multimodal deep learning prognostic model using hematoxylin and eosin-stained, whole-slide images and tumor stage as input, on 2,072 patients from eight EC cohorts including the PORTEC-1/-2/-3 randomized trials. HECTOR demonstrated C-indices in internal (n = 353) and two external (n = 160 and n = 151) test sets of 0.789, 0.828 and 0.815, respectively, outperforming the current gold standard, and identified patients with markedly different outcomes (10-year distant recurrence-free probabilities of 97.0%, 77.7% and 58.1% for HECTOR low-, intermediate- and high-risk groups, respectively, by Kaplan-Meier analysis). HECTOR also predicted adjuvant chemotherapy benefit better than current methods. Morphological and genomic feature extraction identified correlates of HECTOR risk groups, some with therapeutic potential. HECTOR improves on the current gold standard and may help delivery of personalized treatment in EC.

3.
Lancet Digit Health ; 5(2): e71-e82, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36496303

RÉSUMÉ

BACKGROUND: Endometrial cancer can be molecularly classified into POLEmut, mismatch repair deficient (MMRd), p53 abnormal (p53abn), and no specific molecular profile (NSMP) subgroups. We aimed to develop an interpretable deep learning pipeline for whole-slide-image-based prediction of the four molecular classes in endometrial cancer (im4MEC), to identify morpho-molecular correlates, and to refine prognostication. METHODS: This combined analysis included diagnostic haematoxylin and eosin-stained slides and molecular and clinicopathological data from 2028 patients with intermediate-to-high-risk endometrial cancer from the PORTEC-1 (n=466), PORTEC-2 (n=375), and PORTEC-3 (n=393) randomised trials and the TransPORTEC pilot study (n=110), the Medisch Spectrum Twente cohort (n=242), a case series of patients with POLEmut endometrial cancer in the Leiden Endometrial Cancer Repository (n=47), and The Cancer Genome Atlas-Uterine Corpus Endometrial Carcinoma cohort (n=395). PORTEC-3 was held out as an independent test set and a four-fold cross validation was performed. Performance was measured with the macro and class-wise area under the receiver operating characteristic curve (AUROC). Whole-slide images were segmented into tiles of 360 µm resized to 224 × 224 pixels. im4MEC was trained to learn tile-level morphological features with self-supervised learning and to molecularly classify whole-slide images with an attention mechanism. The top 20 tiles with the highest attention scores were reviewed to identify morpho-molecular correlates. Predictions of a nuclear classification deep learning model serve to derive interpretable morphological features. We analysed 5-year recurrence-free survival and explored prognostic refinement by molecular class using the Kaplan-Meier method. FINDINGS: im4MEC attained macro-average AUROCs of 0·874 (95% CI 0·856-0·893) on four-fold cross-validation and 0·876 on the independent test set. The class-wise AUROCs were 0·849 for POLEmut (n=51), 0·844 for MMRd (n=134), 0·883 for NSMP (n=120), and 0·928 for p53abn (n=88). POLEmut and MMRd tiles had a high density of lymphocytes, p53abn tiles had strong nuclear atypia, and the morphology of POLEmut and MMRd endometrial cancer overlapped. im4MEC highlighted a low tumour-to-stroma ratio as a potentially novel characteristic feature of the NSMP class. 5-year recurrence-free survival was significantly different between im4MEC predicted molecular classes in PORTEC-3 (log-rank p<0·0001). The ten patients with aggressive p53abn endometrial cancer that was predicted as MMRd showed inflammatory morphology and appeared to have a better prognosis than patients with correctly predicted p53abn endometrial cancer (p=0·30). The four patients with NSMP endometrial cancer that was predicted as p53abn showed higher nuclear atypia and appeared to have a worse prognosis than patients with correctly predicted NSMP (p=0·13). Patients with MMRd endometrial cancer predicted as POLEmut had an excellent prognosis, as do those with true POLEmut endometrial cancer. INTERPRETATION: We present the first interpretable deep learning model, im4MEC, for haematoxylin and eosin-based prediction of molecular endometrial cancer classification. im4MEC robustly identified morpho-molecular correlates and could enable further prognostic refinement of patients with endometrial cancer. FUNDING: The Hanarth Foundation, the Promedica Foundation, and the Swiss Federal Institutes of Technology.


Sujet(s)
Apprentissage profond , Tumeurs de l'endomètre , Femelle , Humains , Éosine jaunâtre , Hématoxyline , Projets pilotes , Tumeurs de l'endomètre/diagnostic , Tumeurs de l'endomètre/génétique , Tumeurs de l'endomètre/anatomopathologie
4.
Circ Genom Precis Med ; 13(5): 541-547, 2020 10.
Article de Anglais | MEDLINE | ID: mdl-33079603

RÉSUMÉ

BACKGROUND: The blood metabolome incorporates cues from the environment and the host's genetic background, potentially offering a holistic view of an individual's health status. METHODS: We have compiled a vast resource of proton nuclear magnetic resonance metabolomics and phenotypic data encompassing over 25 000 samples derived from 26 community and hospital-based cohorts. RESULTS: Using this resource, we constructed a metabolomics-based age predictor (metaboAge) to calculate an individual's biological age. Exploration in independent cohorts demonstrates that being judged older by one's metabolome, as compared with one's chronological age, confers an increased risk on future cardiovascular disease, mortality, and functionality in older individuals. A web-based tool for calculating metaboAge (metaboage.researchlumc.nl) allows easy incorporation in other epidemiological studies. Access to data can be requested at bbmri.nl/samples-images-data. CONCLUSIONS: In summary, we present a vast resource of metabolomics data and illustrate its merit by constructing a metabolomics-based score for biological age that captures aspects of current and future cardiometabolic health.


Sujet(s)
Vieillissement/génétique , Marqueurs biologiques/métabolisme , Métabolomique/méthodes , Interface utilisateur , Maladies cardiovasculaires/génétique , Maladies cardiovasculaires/métabolisme , Maladies cardiovasculaires/mortalité , Maladies cardiovasculaires/anatomopathologie , Humains , Pays-Bas , Modèles des risques proportionnels , Spectroscopie par résonance magnétique du proton , Facteurs de risque
5.
Hum Brain Mapp ; 39(12): 4776-4786, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30144208

RÉSUMÉ

Huntington's disease (HD) is an autosomal-dominant inherited neurodegenerative disorder characterized by motor disturbances, psychiatric disturbances, and cognitive impairment. Visual cognitive deficits and atrophy of the posterior cerebral cortex are additionally present in early disease stages. This study aimed to assess the extent of structural and functional brain alterations of the visual cortex in HD gene carriers using different neuroimaging modalities. Structural and functional magnetic resonance imaging data were acquired from 18 healthy controls, 21 premanifest, and 20 manifest HD gene carriers. Voxel-based morphometry (VBM) analysis and cortical thickness measurements were performed to assess structural changes in the visual cortex. Brain function was measured by assessing neuronal connectivity changes in response to visual stimulation and at rest in visual resting-state networks. Multiple linear regression analyses were performed to examine the relationship between visual cognitive function and structural imaging measures. Compared to controls, pronounced atrophy and decreased neuronal function at rest were present in associative visual cortices in manifest HD. The primary visual cortex did not show group differences in cortical thickness and in vascular activity after visual stimulation. Thinning of the associative visual cortex was related to worse visual perceptual function. Premanifest HD gene carriers did not show any differences in brain structure or function compared to controls. This study improves the knowledge on posterior brain changes in HD, as our findings suggest that the primary visual cortex remains preserved, both structurally and functionally, while atrophy of associative visual cortices is present in early HD and linked to clinical visual deficits.


Sujet(s)
Dysfonctionnement cognitif , Neuroimagerie fonctionnelle/méthodes , Maladie de Huntington , Imagerie par résonance magnétique/méthodes , Cortex visuel , Adulte , Atrophie/anatomopathologie , Dysfonctionnement cognitif/imagerie diagnostique , Dysfonctionnement cognitif/étiologie , Dysfonctionnement cognitif/anatomopathologie , Dysfonctionnement cognitif/physiopathologie , Femelle , Hétérozygote , Humains , Maladie de Huntington/complications , Maladie de Huntington/imagerie diagnostique , Maladie de Huntington/anatomopathologie , Maladie de Huntington/physiopathologie , Mâle , Adulte d'âge moyen , Cortex visuel/imagerie diagnostique , Cortex visuel/anatomopathologie , Cortex visuel/physiopathologie , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...