Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Biol Chem ; 300(6): 107374, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38762180

RÉSUMÉ

The pre-integration steps of the HIV-1 viral cycle are some of the most valuable targets of recent therapeutic innovations. HIV-1 integrase (IN) displays multiple functions, thanks to its considerable conformational flexibility. Recently, such flexible proteins have been characterized by their ability to form biomolecular condensates as a result of Liquid-Liquid-Phase-Separation (LLPS), allowing them to evolve in a restricted microenvironment within cells called membrane-less organelles (MLO). The LLPS context constitutes a more physiological approach to study the integration of molecular mechanisms performed by intasomes (complexes containing viral DNA, IN, and its cellular cofactor LEDGF/p75). We investigated here if such complexes can form LLPS in vitro and if IN enzymatic activities were affected by this LLPS environment. We observed that the LLPS formed by IN-LEDGF/p75 functional complexes modulate the in vitro IN activities. While the 3'-processing of viral DNA ends was drastically reduced inside LLPS, viral DNA strand transfer was strongly enhanced. These two catalytic IN activities appear thus tightly regulated by the environment encountered by intasomes.


Sujet(s)
Intégrase du VIH , VIH-1 (Virus de l'Immunodéficience Humaine de type 1) , Intégration virale , Intégrase du VIH/métabolisme , Intégrase du VIH/composition chimique , Intégrase du VIH/génétique , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/métabolisme , VIH-1 (Virus de l'Immunodéficience Humaine de type 1)/physiologie , Humains , ADN viral/métabolisme , ADN viral/génétique , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/composition chimique
2.
Cell Rep ; 42(7): 112744, 2023 07 25.
Article de Anglais | MEDLINE | ID: mdl-37418324

RÉSUMÉ

Completion of neuronal migration is critical for brain development. Kif21b is a plus-end-directed kinesin motor protein that promotes intracellular transport and controls microtubule dynamics in neurons. Here we report a physiological function of Kif21b during radial migration of projection neurons in the mouse developing cortex. In vivo analysis in mouse and live imaging on cultured slices demonstrate that Kif21b regulates the radial glia-guided locomotion of newborn neurons independently of its motility on microtubules. We show that Kif21b directly binds and regulates the actin cytoskeleton both in vitro and in vivo in migratory neurons. We establish that Kif21b-mediated regulation of actin cytoskeleton dynamics influences branching and nucleokinesis during neuronal locomotion. Altogether, our results reveal atypical roles of Kif21b on the actin cytoskeleton during migration of cortical projection neurons.


Sujet(s)
Kinésine , Neurones , Animaux , Souris , Cytosquelette d'actine/métabolisme , Mouvement cellulaire , Interneurones/métabolisme , Kinésine/métabolisme , Microtubules/métabolisme , Neurones/métabolisme
3.
Antimicrob Agents Chemother ; 67(7): e0046223, 2023 07 18.
Article de Anglais | MEDLINE | ID: mdl-37310224

RÉSUMÉ

HIV-1 integrase-LEDGF allosteric inhibitors (INLAIs) share the binding site on the viral protein with the host factor LEDGF/p75. These small molecules act as molecular glues promoting hyper-multimerization of HIV-1 IN protein to severely perturb maturation of viral particles. Herein, we describe a new series of INLAIs based on a benzene scaffold that display antiviral activity in the single digit nanomolar range. Akin to other compounds of this class, the INLAIs predominantly inhibit the late stages of HIV-1 replication. A series of high-resolution crystal structures revealed how these small molecules engage the catalytic core and the C-terminal domains of HIV-1 IN. No antagonism was observed between our lead INLAI compound BDM-2 and a panel of 16 clinical antiretrovirals. Moreover, we show that compounds retained high antiviral activity against HIV-1 variants resistant to IN strand transfer inhibitors and other classes of antiretroviral drugs. The virologic profile of BDM-2 and the recently completed single ascending dose phase I trial (ClinicalTrials.gov identifier: NCT03634085) warrant further clinical investigation for use in combination with other antiretroviral drugs. Moreover, our results suggest routes for further improvement of this emerging drug class.


Sujet(s)
Infections à VIH , Inhibiteurs de l'intégrase du VIH , Intégrase du VIH , Humains , Réplication virale , Inhibiteurs de l'intégrase du VIH/pharmacologie , Inhibiteurs de l'intégrase du VIH/usage thérapeutique , Antiviraux/pharmacologie , Intégrase du VIH/métabolisme , Infections à VIH/traitement médicamenteux , Régulation allostérique
4.
Mol Cell ; 82(20): 3885-3900.e10, 2022 10 20.
Article de Anglais | MEDLINE | ID: mdl-36220101

RÉSUMÉ

RNA can regulate its own synthesis without auxiliary proteins. For example, U-rich RNA sequences signal RNA polymerase (RNAP) to pause transcription and are required for transcript release at intrinsic terminators in all kingdoms of life. In contrast, the regulatory RNA putL suppresses pausing and termination in cis. However, how nascent RNA modulates its own synthesis remains largely unknown. We present cryo-EM reconstructions of RNAP captured during transcription of putL variants or an unrelated sequence at a U-rich pause site. Our results suggest how putL suppresses pausing and promotes its synthesis. We demonstrate that transcribing a U-rich sequence, a ubiquitous trigger of intrinsic termination, promotes widening of the RNAP nucleic-acid-binding channel. Widening destabilizes RNAP interactions with DNA and RNA to facilitate transcript dissociation reminiscent of intrinsic transcription termination. Surprisingly, RNAP remains bound to DNA after transcript release. Our results provide the structural framework to understand RNA-mediated intrinsic transcription termination.


Sujet(s)
DNA-directed RNA polymerases , ARN , ARN/génétique , ARN/métabolisme , DNA-directed RNA polymerases/métabolisme , Transcription génétique , ADN , Bactéries/génétique , Bactéries/métabolisme , Conformation d'acide nucléique
5.
Sci Rep ; 8(1): 10673, 2018 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-29988042

RÉSUMÉ

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

6.
Sci Rep ; 8(1): 9272, 2018 06 18.
Article de Anglais | MEDLINE | ID: mdl-29915179

RÉSUMÉ

Type 2 DNA topoisomerases (Top2) are critical components of key protein complexes involved in DNA replication, chromosome condensation and segregation, as well as gene transcription. The Top2 were found to be the main targets of anticancer agents, leading to intensive efforts to understand their functional and physiological role as well as their molecular structure. Post-translational modifications have been reported to influence Top2 enzyme activities in particular those of the mammalian Top2α isoform. In this study, we identified phosphorylation, and for the first time, acetylation sites in the human Top2α isoform produced in eukaryotic expression systems. Structural analysis revealed that acetylation sites are clustered on the catalytic domains of the homodimer while phosphorylation sites are located in the C-terminal domain responsible for nuclear localization. Biochemical analysis of the eukaryotic-specific K168 residue in the ATPase domain shows that acetylation affects a key position regulating ATP hydrolysis through the modulation of dimerization. Our findings suggest that acetylation of specific sites involved in the allosteric regulation of human Top2 may provide a mechanism for modulation of its catalytic activity.


Sujet(s)
ADN topoisomérases de type II/métabolisme , Cellules eucaryotes/métabolisme , Lysine/métabolisme , Maturation post-traductionnelle des protéines , Acétylation , Séquence d'acides aminés , Lignée cellulaire , Humains , Protéines mutantes/métabolisme , Phosphorylation , Domaines protéiques , Saccharomyces cerevisiae/métabolisme , Température
8.
Nucleic Acids Res ; 41(16): 7815-27, 2013 Sep.
Article de Anglais | MEDLINE | ID: mdl-23804759

RÉSUMÉ

Type 2A DNA topoisomerases (Topo2A) remodel DNA topology during replication, transcription and chromosome segregation. These multisubunit enzymes catalyze the transport of a double-stranded DNA through a transient break formed in another duplex. The bacterial DNA gyrase, a target for broad-spectrum antibiotics, is the sole Topo2A enzyme able to introduce negative supercoils. We reveal here for the first time the architecture of the full-length Thermus thermophilus DNA gyrase alone and in a cleavage complex with a 155 bp DNA duplex in the presence of the antibiotic ciprofloxacin, using cryo-electron microscopy. The structural organization of the subunits of the full-length DNA gyrase points to a central role of the ATPase domain acting like a 'crossover trap' that may help to sequester the DNA positive crossover before strand passage. Our structural data unveil how DNA is asymmetrically wrapped around the gyrase-specific C-terminal ß-pinwheel domains and guided to introduce negative supercoils through cooperativity between the ATPase and ß-pinwheel domains. The overall conformation of the drug-induced DNA binding-cleavage complex also suggests that ciprofloxacin traps a DNA pre-transport conformation.


Sujet(s)
DNA gyrase/composition chimique , ADN superhélicoïdal/composition chimique , Antibactériens/composition chimique , Ciprofloxacine/composition chimique , Cryomicroscopie électronique , ADN/composition chimique , DNA gyrase/ultrastructure , Holoenzymes/composition chimique , Holoenzymes/ultrastructure , Spectrométrie de masse , Modèles moléculaires , Structure tertiaire des protéines , Thermus thermophilus/enzymologie
9.
Nucleic Acids Res ; 40(7): 3275-88, 2012 Apr.
Article de Anglais | MEDLINE | ID: mdl-22167472

RÉSUMÉ

Ribonuclease P (RNase P) and RNase MRP are closely related ribonucleoprotein enzymes, which process RNA substrates including tRNA precursors for RNase P and 5.8 S rRNA precursors, as well as some mRNAs, for RNase MRP. The structures of RNase P and RNase MRP have not yet been solved, so it is unclear how the proteins contribute to the structure of the complexes and how substrate specificity is determined. Using electron microscopy and image processing we show that eukaryotic RNase P and RNase MRP have a modular architecture, where proteins stabilize the RNA fold and contribute to cavities, channels and chambers between the modules. Such features are located at strategic positions for substrate recognition by shape and coordination of the cleaved-off sequence. These are also the sites of greatest difference between RNase P and RNase MRP, highlighting the importance of the adaptation of this region to the different substrates.


Sujet(s)
Endoribonucleases/composition chimique , Endoribonucleases/ultrastructure , Ribonuclease P/composition chimique , Ribonuclease P/ultrastructure , Protéines de transport/composition chimique , Endodeoxyribonucleases/composition chimique , Modèles moléculaires , Sous-unités de protéines/composition chimique , ARN/composition chimique , Ribonucléases/composition chimique , Ribonucléoprotéines/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique
10.
FEBS Lett ; 585(14): 2182-6, 2011 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-21669201

RÉSUMÉ

The CCR4-NOT complex is a deadenylation complex, which plays a major role for mRNA stability. The complex is conserved from yeast to human and consists of nine proteins NOT1-NOT5, CCR4, CAF1, CAF40 and CAF130. We have successfully isolated the complex using a Protein A tag on NOT1, followed by cross-linking on a glycerol gradient. All components of the complex were identified by mass spectrometry. Electron microscopy of negatively stained particles followed by image reconstruction revealed an L-shaped complex with two arms of similar length. The arms form an accessible cavity, which we think could provide an extensive interface for RNA-deadenylation.


Sujet(s)
Protéines du cycle cellulaire/ultrastructure , Complexes multiprotéiques/composition chimique , Complexes multiprotéiques/isolement et purification , Sous-unités de protéines/composition chimique , Ribonucléases/ultrastructure , Protéines de Saccharomyces cerevisiae/ultrastructure , Facteurs de transcription/ultrastructure , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/isolement et purification , Humains , Spectrométrie de masse/méthodes , Microscopie électronique/méthodes , Modèles moléculaires , Sous-unités de protéines/génétique , Sous-unités de protéines/isolement et purification , ARN messager/génétique , ARN messager/métabolisme , Ribonucléases/génétique , Ribonucléases/isolement et purification , Saccharomyces cerevisiae/composition chimique , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/isolement et purification , Facteurs de transcription/génétique , Facteurs de transcription/isolement et purification
11.
Science ; 326(5957): 1235-40, 2009 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-19965468

RÉSUMÉ

The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.


Sujet(s)
Protéines bactériennes/analyse , Génome bactérien , Complexes multiprotéiques/analyse , Mycoplasma pneumoniae/composition chimique , Mycoplasma pneumoniae/génétique , Protéome , Protéines bactériennes/isolement et purification , Protéines bactériennes/métabolisme , Biologie informatique , Spectrométrie de masse/méthodes , Voies et réseaux métaboliques , Microscopie électronique , Modèles biologiques , Modèles moléculaires , Complexes multiprotéiques/métabolisme , Mycoplasma pneumoniae/métabolisme , Mycoplasma pneumoniae/ultrastructure , Reconnaissance automatique des formes , Cartographie d'interactions entre protéines , Biologie des systèmes
12.
J Biol Chem ; 284(50): 34911-7, 2009 Dec 11.
Article de Anglais | MEDLINE | ID: mdl-19840948

RÉSUMÉ

Nascent mRNAs produced by transcription in the nucleus are subsequently processed and packaged into mRNA ribonucleoprotein particles (messenger ribonucleoproteins (mRNPs)) before export to the cytoplasm. Here, we have used the poly(A)-binding protein Nab2 to isolate mRNPs from yeast under conditions that preserve mRNA integrity. Upon Nab2-tandem affinity purification, several mRNA export factors were co-enriched (Yra1, Mex67, THO-TREX) that were present in mRNPs of different size and mRNA length. High-throughput sequencing of the co-precipitated RNAs indicated that Nab2 is associated with the bulk of yeast transcripts with no specificity for different mRNA classes. Electron microscopy revealed that many of the mRNPs have a characteristic elongated structure. Our data suggest that mRNPs, although associated with different mRNAs, have a unifying core structure.


Sujet(s)
Transporteurs nucléocytoplasmiques/composition chimique , Transporteurs nucléocytoplasmiques/métabolisme , ARN messager/métabolisme , Protéines de liaison à l'ARN/composition chimique , Protéines de liaison à l'ARN/métabolisme , Ribonucléoprotéines/composition chimique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Analyse de profil d'expression de gènes , Conformation d'acide nucléique , Transporteurs nucléocytoplasmiques/génétique , Transporteurs nucléocytoplasmiques/isolement et purification , Liaison aux protéines , Conformation des protéines , ARN fongique/génétique , ARN fongique/métabolisme , ARN messager/génétique , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/isolement et purification , Ribonucléoprotéines/génétique , Ribonucléoprotéines/métabolisme , Ribonucléoprotéines/ultrastructure , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/isolement et purification
13.
Structure ; 16(12): 1789-98, 2008 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-19081055

RÉSUMÉ

Vacuolar ATPases (V-ATPases) are ATP-dependent proton pumps that maintain the acidity of cellular compartments. They are composed of a membrane-integrated proton-translocating V(0) and an extrinsic cytoplasmic catalytic domain V(1), joined by several connecting subunits. To clarify the arrangement of these peripheral connections and their interrelation with other subunits of the holocomplex, we have determined the solution structures of isolated EG and EGC connecting subcomplexes by small angle X-ray scattering and the 3D map of the yeast V-ATPase by electron microscopy. In solution, EG forms a slightly kinked rod, which assembles with subunit C into an L-shaped structure. This model is supported by the microscopy data, which show three copies of EG with two of these linked by subunit C. However, the relative arrangement of the EG and C subunits in solution is more open than that in the holoenzyme, suggesting a conformational change of EGC during regulatory assembly and disassembly.


Sujet(s)
Conformation moléculaire , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/enzymologie , Vacuolar Proton-Translocating ATPases/métabolisme , Traitement d'image par ordinateur , Lumière , Modèles moléculaires , Structure quaternaire des protéines , Structure tertiaire des protéines , Sous-unités de protéines/composition chimique , Sous-unités de protéines/génétique , Sous-unités de protéines/isolement et purification , Sous-unités de protéines/métabolisme , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Protéines recombinantes/ultrastructure , Saccharomyces cerevisiae/ultrastructure , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/isolement et purification , Protéines de Saccharomyces cerevisiae/ultrastructure , Diffusion de rayonnements , Solubilité , Solutions/composition chimique , Relation structure-activité , Vacuolar Proton-Translocating ATPases/génétique , Vacuolar Proton-Translocating ATPases/isolement et purification , Vacuolar Proton-Translocating ATPases/ultrastructure , Diffraction des rayons X
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE