Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Toxicol Rep ; 8: 155-161, 2021.
Article de Anglais | MEDLINE | ID: mdl-33473352

RÉSUMÉ

Species differences in hepatic metabolism of thyroxine (T4) by uridine diphosphate glucuronosyl transferase (UGT) and susceptibility to thyroid hormone imbalance could underlie differences in thyroid carcinogenesis caused by hepatic enzyme inducers in rats and humans. To investigate this hypothesis we examined profiles of hepatic UGT induction by the prototypical CAR activator phenobarbital (PB) in rat and human liver 3D microtissues. The rationale for this approach was that 3D microtissues would generate data more relevant to humans. Rat and human liver 3D microtissues were exposed to PB over a range of concentrations (500 u M - 2000 u M) and times (24-96 hr). Microarray and proteomics analyses were performed on parallel samples to generate integrated differentially expressed gene (DEG) datasets. Bioinformatics analysis of DEG data, including CAR response element (CRE) sequence analysis of UGT promoters, was used to assess species differences in UGT induction relative to CAR-mediated transactivation potential. A higher proportion of human UGT promoters were found to contain consensus CREs compared to the rat homologs. UGTs 1a6, 2b17 and 2b37 were upregulated by PB in rat liver 3D microtissues, but unaltered in human liver 3D microtissues. By contrast, human UGTs 1A8, 1A10 and 2B10 showed higher levels of induction (RNA and /or protein) compared to the rat homologs. There was general concordance between the presence of CREs and the induction of UGT RNA. As UGT1A and 2B isoforms metabolise T4, these results suggest that differences in UGT induction could contribute to differential susceptibility to CAR-mediated thyroid carcinogenesis in rats and humans.

2.
Toxicol Rep ; 6: 998-1005, 2019.
Article de Anglais | MEDLINE | ID: mdl-31673501

RÉSUMÉ

Characterisation of the mode of action (MOA) of constitutive androstane receptor (CAR)-mediated rodent liver tumours involves measurement 5 key events including activation of the CAR receptor, altered gene expression, hepatocellular proliferation, clonal expansion and increased hepatocellular adenomas/carcinomas. To test whether or not liver 3D microtissues (LiMTs) recapitulate CAR- mediated procarcinogenic key events in response to the prototypical CAR activator phenobarbital (PB) we performed hepatocyte proliferation (LI%) analysis in rat and human LiMTs using a microTMA technology in conjunction with integrated transcriptomics (microarray) and proteomics analysis. The rationale for this approach was that LiMTs containing parenchymal and non-parenchymal cells (NPCs) are more physiologically representative of liver and thus would generate data more relevant to the in vivo situation. Rat and human LiMTs were treated with PB over a range of concentrations (500 uM - 2000 uM) and times (24 h - 96 h) in a dose-response/time-course analysis. There was a dose-dependent induction of LI% in rat LiMTs, however there was little or no effect of PB on LI% in human LiMTs. ATP levels in the rat and human LiMTs were similar to control in all of the PB treatments. There was also a dose- and time-dependent PB-mediated RNA induction of CAR regulated genes CYP2B6/Cyp2b2, CYP3A7/Cyp3a9 and UGT1A6/Ugt1a6 in human and rat LiMTs, respectively. These CAR regulated genes were also upregulated at the protein level. Ingenuity pathways analysis (IPA) indicated that there was a significant (Z score >2.0;-log p value >) activation of CAR by PB in both human and rat LiMTs. These results indicate that human and rat LiMTs showed the expected responses at the level of PB-induced hepatocyte proliferation and enzyme induction with rat LiMTs showing significant dose-dependent effects while human LiMTs showed no proliferation response but did show dose-dependent enzyme induction at the RNA and protein levels. In conclusion LiMTs serve as a model to provide mechanistic data for 3 of the 5 key events considered necessary to establish a CAR-mediated MOA for liver tumourigenesis and thus can potentially reduce the use of animals when compiling mechanistic data packages.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE