Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Elife ; 122023 Nov 14.
Article de Anglais | MEDLINE | ID: mdl-37963091

RÉSUMÉ

The bile acid sodium symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here, we solve the crystal structure at 2.3 Å of a transporter from Neisseria meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.


Sujet(s)
Symporteurs , Humains , Symporteurs/métabolisme , Sodium/métabolisme , Protéines de transport membranaire/métabolisme , Simulation de dynamique moléculaire , Ions/métabolisme
2.
Microb Physiol ; 2023 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-37816339

RÉSUMÉ

The denitrifying betaproteobacterium Aromatoleum aromaticum EbN1T is a facultative anaerobic degradation specialist and belongs to the environmental bacteria studied best on the proteogenomic level. This review summarizes the current state of knowledge about the anaerobic and aerobic degradation (to CO2) of 47 organic growth substrates (23 aromatic, 21 aliphatic, and 3 amino acids) as well as the modes of respiratory energy conservation (denitrification vs. O2-respiration). The constructed catabolic network is comprised of 256 genes, which occupy ~7.5% of the coding regions of the genome. In total 219 encoded proteins have been identified by differential proteomics, yielding a proteome coverage of ~74% of the network. Its degradation section is composed of 31 peripheral and 4 central pathways, with several peripheral modules (e.g., for 4-ethylphenol, 2-phenylethylamine, indoleacetate, and phenylpropanoids) discovered only after the complete genome [Rabus et al., Arch Microbiol 2005 Jan;183(1):27‒36] and a first proteomic survey [Wöhlbrand et al., Proteomics 2007 Jun;7(13):2222‒39] of A. aromaticum EbN1T were reported. The activation of recalcitrant aromatic compounds involves a suite of biochemically intriguing reactions ranging from CH-bond activation (e.g., ethylbenzene dehydrogenase) via carboxylation (e.g., acetophenone carboxylase) to oxidative deamination (e.g., benzylamine), reductive dearomatization (benzoyl-CoA), and epoxide-forming oxygenases (e.g., phenylacetyl-CoA). The peripheral reaction sequences are substrate-specifically induced, mediated by specific transcriptional regulators with in vivo response thresholds in the nanomolar range. While lipophilic substrates (e.g., phenolics) enter the cells via passive diffusion, polar ones require active uptake that is driven by specific transporters. Next to the protein repertoire for canonical complexes I‒III, denitrification and O2-respiration (low and high affinity oxidases), the genome encodes an Ndh-II, a tetrathionate reductase, two ETF:quinone oxidoreductases, and two Rnf-type complexes, broadening the electron transfer flexibility of the strain. Taken together, the detailed catabolic network presented here forms a solid basis for future systems biology level studies with A. aromaticum EbN1T.

3.
bioRxiv ; 2023 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-37645971

RÉSUMÉ

The Bile Acid Sodium Symporter (BASS) family transports a wide array of molecules across membranes, including bile acids in humans, and small metabolites in plants. These transporters, many of which are sodium-coupled, have been shown to use an elevator mechanism of transport, but exactly how substrate binding is coupled to sodium ion binding and transport is not clear. Here we solve the crystal structure at 2.3 Å of a transporter from Neisseria Meningitidis (ASBTNM) in complex with pantoate, a potential substrate of ASBTNM. The BASS family is characterised by two helices that cross-over in the centre of the protein in an arrangement that is intricately held together by two sodium ions. We observe that the pantoate binds, specifically, between the N-termini of two of the opposing helices in this cross-over region. During molecular dynamics simulations the pantoate remains in this position when sodium ions are present but is more mobile in their absence. Comparison of structures in the presence and absence of pantoate demonstrates that pantoate elicits a conformational change in one of the cross-over helices. This modifies the interface between the two domains that move relative to one another to elicit the elevator mechanism. These results have implications, not only for ASBTNM but for the BASS family as a whole and indeed other transporters that work through the elevator mechanism.

4.
Ophthalmic Physiol Opt ; 43(6): 1391-1405, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37417310

RÉSUMÉ

INTRODUCTION: This study analysed the impact of general purpose progressive addition lenses (GP-PALs) and computer progressive addition lenses (PC-PALs) on the activity of the trapezius muscle during computer operation. METHODS: In this randomised, single-blinded, crossover study, surface electromyography (SEMG) signals were recorded bilaterally from the trapezius muscle during a 30-min computer task performed wearing different presbyopic corrections. The amplitude probability distribution function and its percentiles, gap frequency, muscular rest time and sustained low-level muscle activity periods were analysed in 32 subjects with artificially induced presbyopia. Subjectively perceived differences in vision and postural load between lenses were evaluated using a seven-item questionnaire (non-standardised, visual analogue scale ranged from 1 [bad] to 100 [good]). RESULTS: Considering the SEMG data, no significant difference in the muscular activity of the trapezius muscle was observed when using GP-PALs or PC-PALs for computer operation. However, PC-PALs showed statistically and clinically significantly higher results for subjectively perceived visual quality (78.4-31.3; p < 0.001), spontaneous tolerance (79.2-31.3; p < 0.001) and field of view (75.9-23.5; p < 0.001) compared with GP-PALs. CONCLUSIONS: Even though the electromyographic approach did not show a significant differentiation between the lenses, the subjective evaluation was clearly in favour of PC-PALs. Eye care practitioners should always take an occupational history of presbyopes, ask about the workplace situation and consider the use of PC-PALs.

5.
Angew Chem Int Ed Engl ; 62(36): e202307317, 2023 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-37358186

RÉSUMÉ

Pyrazolones represent an important structural motif in active pharmaceutical ingredients. Their asymmetric synthesis is thus widely studied. Still, a generally highly enantio- and diastereoselective 1,4-addition to nitroolefins providing products with adjacent stereocenters is elusive. In this article, a new polyfunctional CuII -1,2,3-triazolium-aryloxide catalyst is presented which enables this reaction type with high stereocontrol. DFT studies revealed that the triazolium stabilizes the transition state by hydrogen bonding between C(5)-H and the nitroolefin and verify a cooperative mode of activation. Moreover, they show that the catalyst adopts a rigid chiral cage/pore structure by intramolecular hydrogen bonding, by which stereocontrol is achieved. Control catalyst systems confirm the crucial role of the triazolium, aryloxide and CuII , requiring a sophisticated structural orchestration for high efficiency. The addition products were used to form pyrazolidinones by chemoselective C=N reduction. These heterocycles are shown to be valuable precursors toward ß,γ'-diaminoamides by chemoselective nitro and N-N bond reductions. Morphological profiling using the Cell painting assay identified biological activities for the pyrazolidinones and suggest modulation of DNA synthesis as a potential mode of action. One product showed biological similarity to Camptothecin, a lead structure for cancer therapy.

6.
Angew Chem Int Ed Engl ; 62(13): e202217519, 2023 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-36651714

RÉSUMÉ

A catalyst type is disclosed allowing for exceptional efficiency in direct 1,4-additions. The catalyst is a zwitterionic entity, in which acetate binds to CuII , which is formally negatively charged and serving as counterion for benzimidazolium. All 3 functionalities are involved in the catalytic activation. For maleimides productivity was increased by a factor >300 compared to literature (TONs up to 6700). High stereoselectivity and productivity was attained for a broad range of other Michael acceptors as well. The polyfunctional catalyst is accessible in only 4 steps from N-Ph-benzimidazole with an overall yield of 96 % and robust during catalysis. This allowed to reuse the same catalyst multiple times with nearly constant efficiency. Mechanistic studies, in particular by DFT, give a detailed picture how the catalyst operates. The benzimidazolium unit stabilizes the coordinated enolate nucleophile and prevents that acetate/acetic acid dissociate from the catalyst.

7.
mSystems ; 7(6): e0068522, 2022 12 20.
Article de Anglais | MEDLINE | ID: mdl-36445109

RÉSUMÉ

Members of the genus Aromatoleum thrive in diverse habitats and use a broad range of recalcitrant organic molecules coupled to denitrification or O2 respiration. To gain a holistic understanding of the model organism A. aromaticum EbN1T, we studied its catabolic network dynamics in response to 3-(4-hydroxyphenyl)propanoate, phenylalanine, 3-hydroxybenzoate, benzoate, and acetate utilized under nitrate-reducing versus oxic conditions. Integrated multi-omics (transcriptome, proteome, and metabolome) covered most of the catabolic network (199 genes) and allowed for the refining of knowledge of the degradation modules studied. Their substrate-dependent regulation showed differing degrees of specificity, ranging from high with 3-(4-hydroxyphenyl)propanoate to mostly relaxed with benzoate. For benzoate, the transcript and protein formation were essentially constitutive, contrasted by that of anoxia-specific versus oxia-specific metabolite profiles. The matrix factorization of transcriptomic data revealed that the anaerobic modules accounted for most of the variance across the degradation network. The respiration network appeared to be constitutive, both on the transcript and protein levels, except for nitrate reductase (with narGHI expression occurring only under nitrate-reducing conditions). The anoxia/nitrate-dependent transcription of denitrification genes is apparently controlled by three FNR-type regulators as well as by NarXL (all constitutively formed). The resequencing and functional reannotation of the genome fostered a genome-scale metabolic model, which is comprised of 655 enzyme-catalyzed reactions and 731 distinct metabolites. The model predictions for growth rates and biomass yields agreed well with experimental stoichiometric data, except for 3-(4-hydroxyphenyl)propanoate, with which 4-hydroxybenzoate was exported. Taken together, the combination of multi-omics, growth physiology, and a metabolic model advanced our knowledge of an environmentally relevant microorganism that differs significantly from other bacterial model strains. IMPORTANCE Aromatic compounds are abundant constituents not only of natural organic matter but also of bulk industrial chemicals and fuel components of environmental concern. Considering the widespread occurrence of redox gradients in the biosphere, facultative anaerobic degradation specialists can be assumed to play a prominent role in the natural mineralization of organic matter and in bioremediation at contaminated sites. Surprisingly, differential multi-omics profiling of the A. aromaticum EbN1T studied here revealed relaxed regulatory stringency across its four main physiological modi operandi (i.e., O2-independent and O2-dependent degradation reactions versus denitrification and O2 respiration). Combining multi-omics analyses with a genome-scale metabolic model aligned with measured growth performances establishes A. aromaticum EbN1T as a systems-biology model organism and provides unprecedented insights into how this bacterium functions on a holistic level. Moreover, this experimental platform invites future studies on eco-systems and synthetic biology of the environmentally relevant betaproteobacterial Aromatoleum/Azoarcus/Thauera cluster.


Sujet(s)
Propionates , Biologie des systèmes , Anaérobiose , Nitrates , Benzoates
8.
Phys Chem Chem Phys ; 24(36): 21617-21630, 2022 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-35938232

RÉSUMÉ

Aiming at merocyanine dyes with good linear optical and self-assembly properties, a series of rigid mono-, bi- and tricyclic merocyanines with O- and N-donor units as well as keto or malodinitrile acceptor units was prepared by a convergent approach. With particular focus on tailoring the donor unit, a selection of appropriate derivatives was investigated with respect to their dye properties in solution and in the bulk (UV/Vis, fluorescence, temperature-dependent fluorescence, lifetime). Determination of fluorescence quantum yields revealed the importance of the donor unit and the chromophore size. Larger chromophores and N-donors were beneficial for strong emission in solution, whereas small chromophores and O-donors favored emission in the solid state. To rationalize the different optical properties depending on their donor unit, density functional theory (DFT) calculations were performed. Liquid crystalline derivatives were additionally studied by optical polarization microscopy, differential scanning calorimetry, and X-ray diffraction experiments. For merocyanines with O-donor, fluorinated side chains were mandatory to get stable enantiotropic SmA phases regardless of chromophore size, side chain lengths or acceptor unit. Increased mesophase widths (up to 134 K) were observed upon increasing the chromophore lengths, chain lengths (up to C12) and F/C ratio in the side chain. On the other hand, merocyanines with N-donor and keto acceptor showed enantiotropic SmA phases in the presence of simple alkoxy side chains. The tricyclic merocyanine with N-donor shows an additional SmE phase at lower temperatures. The results revealed the importance of the donor unit to balance optical and mesomorphic properties in merocynanines.

9.
Environ Microbiol ; 24(7): 3195-3211, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35590445

RÉSUMÉ

Large quantities of organic matter are continuously deposited, and (a)biotic gradients intersect in the soil-rhizosphere, where biodegradation contributes to the global cycles of elements. The betaproteobacterial genus Aromatoleum comprises cosmopolitan, facultative denitrifying degradation specialists. Aromatoleum aromaticum. pCyN1 stands out for anaerobically decomposing plant-derived monoterpenes in addition to monoaromatic hydrocarbons, polar aromatics and aliphatics. The catabolic network's structure and flexibility in A. aromaticum pCyN1 were studied across 34 growth conditions by superimposing proteome profiles onto the manually annotated 4.37 Mbp genome. Strain pCyN1 employs three fundamentally different enzymes for C-H-bond cleavage at the methyl groups of p-cymene/4-ethyltoluene, toluene and p-cresol respectively. Regulation of degradation modules displayed substrate specificities ranging from narrow (toluene and cyclohexane carboxylate) via medium-wide (one module shared by p-cymene, 4-ethyltoluene, α-phellandrene, α-terpinene, γ-terpinene and limonene) to broad (central benzoyl-CoA pathway serving 16 aromatic substrates). Remarkably, three variants of ATP-dependent (class I) benzoyl-CoA reductase and four different ß-oxidation routes establish a degradation hub that accommodates the substrate diversity. The respiratory system displayed several conspicuous profiles, e.g. the presence of nitrous oxide reductase under oxic and of low-affinity oxidase under anoxic conditions. Overall, nutritional versatility in conjunction with network regulation endow A. aromaticum pCyN1 with broad adaptability.


Sujet(s)
Rhodocyclaceae , Toluène , Anaérobiose , Dépollution biologique de l'environnement , Rhodocyclaceae/métabolisme , Toluène/métabolisme
10.
Microb Physiol ; 31(1): 16-35, 2021.
Article de Anglais | MEDLINE | ID: mdl-33477134

RÉSUMÉ

The betaproteobacterial genus Aromatoleum comprises facultative denitrifiers specialized in the anaerobic degradation of recalcitrant organic compounds (aromatic and terpenoid). This study reports on the complete and manually annotated genomes of Ar. petrolei ToN1T (5.41 Mbp) and Ar. bremense PbN1T (4.38 Mbp), which cover the phylogenetic breadth of the genus Aromatoleum together with previously genome sequenced Ar. aromaticum EbN1T [Rabus et al., Arch Microbiol. 2005 Jan;183(1):27-36]. The gene clusters for the anaerobic degradation of aromatic and terpenoid (strain ToN1T only) compounds are scattered across the genomes of strains ToN1T and PbN1T. The richness in mobile genetic elements is shared with other Aromatoleum spp., substantiating that horizontal gene transfer should have been a major driver in shaping the genomes of this genus. The composite catabolic network of strains ToN1T and PbN1T comprises 88 proteins, the coding genes of which occupy 86.1 and 76.4 kbp (1.59 and 1.75%) of the respective genome. The strain-specific gene clusters for anaerobic degradation of ethyl-/propylbenzene (strain PbN1T) and toluene/monoterpenes (strain ToN1T) share high similarity with their counterparts in Ar. aromaticum strains EbN1T and pCyN1, respectively. Glucose is degraded via the ED-pathway in strain ToN1T, while gluconeogenesis proceeds via the reverse EMP-pathway in strains ToN1T, PbN1T, and EbN1T. The diazotrophic, endophytic lifestyle of closest related genus Azoarcus is known to be associated with nitrogenase and type-6 secretion system (T6SS). By contrast, strains ToN1T, PbN1T, and EbN1T lack nif genes for nitrogenase (including cofactor synthesis and enzyme maturation). Moreover, strains PbN1T and EbN1T do not possess tss genes for T6SS, while strain ToN1T does and facultative endophytic "Aromatoleum" sp. CIB is known to even have both. These findings underpin the functional heterogeneity among Aromatoleum members, correlating with the high plasticity of their genomes.


Sujet(s)
Anaérobiose/génétique , Métabolisme énergétique/génétique , Génome bactérien/génétique , Rhodocyclaceae/génétique , Rhodocyclaceae/métabolisme , Dérivés du benzène/métabolisme , Métabolisme glucidique/génétique , Techniques génétiques , Néoglucogenèse/génétique , Hydrocarbures aromatiques/métabolisme , Séquences répétées dispersées/génétique , Famille multigénique/génétique , Nitrogenase/génétique , Phylogenèse , Rhodocyclaceae/classification , Terpènes/métabolisme , Systèmes de sécrétion de type VI/génétique , Séquençage du génome entier
11.
Proc Natl Acad Sci U S A ; 117(41): 25396-25401, 2020 10 13.
Article de Anglais | MEDLINE | ID: mdl-33024018

RÉSUMÉ

Quantum computers and simulators may offer significant advantages over their classical counterparts, providing insights into quantum many-body systems and possibly improving performance for solving exponentially hard problems, such as optimization and satisfiability. Here, we report the implementation of a low-depth Quantum Approximate Optimization Algorithm (QAOA) using an analog quantum simulator. We estimate the ground-state energy of the Transverse Field Ising Model with long-range interactions with tunable range, and we optimize the corresponding combinatorial classical problem by sampling the QAOA output with high-fidelity, single-shot, individual qubit measurements. We execute the algorithm with both an exhaustive search and closed-loop optimization of the variational parameters, approximating the ground-state energy with up to 40 trapped-ion qubits. We benchmark the experiment with bootstrapping heuristic methods scaling polynomially with the system size. We observe, in agreement with numerics, that the QAOA performance does not degrade significantly as we scale up the system size and that the runtime is approximately independent from the number of qubits. We finally give a comprehensive analysis of the errors occurring in our system, a crucial step in the path forward toward the application of the QAOA to more general problem instances.

12.
Chemistry ; 26(32): 7199-7204, 2020 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-32167607

RÉSUMÉ

The chromium(III) complex [CrIII (ddpd)2 ]3+ (molecular ruby; ddpd=N,N'-dimethyl-N,N'-dipyridine-2-yl-pyridine-2,6-diamine) is reduced to the genuine chromium(II) complex [CrII (ddpd)2 ]2+ with d4 electron configuration. This reduced molecular ruby represents one of the very few chromium(II) complexes showing spin crossover (SCO). The reversible SCO is gradual with T1/2 around room temperature. The low-spin and high-spin chromium(II) isomers exhibit distinct spectroscopic and structural properties (UV/Vis/NIR, IR, EPR spectroscopies, single-crystal XRD). Excitation of [CrII (ddpd)2 ]2+ with UV light at 20 and 290 K generates electronically excited states with microsecond lifetimes. This initial study on the unique reduced molecular ruby paves the way for thermally and photochemically switchable magnetic systems based on chromium complexes complementing the well-established iron(II) SCO systems.

13.
Chemistry ; 25(18): 4722-4731, 2019 Mar 27.
Article de Anglais | MEDLINE | ID: mdl-30601577

RÉSUMÉ

The constitutions and absolute configurations of two previously unknown intermediates, (1S,2S,4S)-2-hydroxy-4-isopropylcyclohexane-1-carboxylate and (S)-3-isopropylpimelate, of anaerobic degradation of p-cymene in the bacterium Aromatoleum aromaticum pCyN1 are reported. These intermediates (as CoA esters) are involved in the further degradation of 4-isopropylbenzoyl-CoA formed by methyl group hydroxylation and subsequent oxidation of p-cymene. Proteogenomics indicated 4-isopropylbenzoyl-CoA degradation involves (i) a novel member of class I benzoyl-CoA reductase (BCR) as known from Thauera aromatica K172 and (ii) a modified ß-oxidation pathway yielding 3-isopropylpimeloyl-CoA analogously to benzoyl-CoA degradation in Rhodopseudomonas palustris. Reference standards of all four diastereoisomers of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate as well as both enantiomers of 3-isopropylpimelate were obtained by stereoselective syntheses via methyl 4-isopropyl-2-oxocyclohexane-1-carboxylate. The stereogenic center carrying the isopropyl group was established using a rhodium-catalyzed asymmetric conjugate addition. X-ray crystallography revealed that the thermodynamically most stable stereoisomer of 2-hydroxy-4-isopropylcyclohexane-1-carboxylate is formed during p-cymene degradation. Our findings imply that the reductive dearomatization of 4-isopropylbenzoyl-CoA by the BCR of A. aromaticum pCyN1 stereospecifically forms (S)-4-isopropyl-1,5-cyclohexadiene-1-carbonyl-CoA.


Sujet(s)
Betaproteobacteria/métabolisme , Dépollution biologique de l'environnement , Coenzyme A/métabolisme , Monoterpènes/métabolisme , Anaérobiose , Catalyse , Cymènes , Dénitrification , Hydroxylation , Modèles moléculaires , Oxydoréduction , Rhodopseudomonas/métabolisme , Stéréoisomérie , Thauera/métabolisme
14.
J Biol Chem ; 291(41): 21656-21668, 2016 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-27555327

RÉSUMÉ

The lipid bilayer is a dynamic environment that consists of a mixture of lipids with different properties that regulate the function of membrane proteins; these lipids are either annular, masking the protein hydrophobic surface, or specific lipids, essential for protein function. In this study, using tandem mass spectrometry, we have identified specific lipids associated with the Escherichia coli ABC transporter McjD, which translocates the antibacterial peptide MccJ25. Using non-denaturing mass spectrometry, we show that McjD in complex with MccJ25 survives the gas phase. Partial delipidation of McjD resulted in reduced ATPase activity and thermostability as shown by circular dichroism, both of which could be restored upon addition of defined E. coli lipids. We have resolved a phosphatidylglycerol lipid associated with McjD at 3.4 Å resolution, whereas molecular dynamic simulations carried out in different lipid environments assessed the binding of specific lipids to McjD. Combined, our data show a synergistic effect of zwitterionic and negatively charged lipids on the activity of McjD; the zwitterionic lipids provide structural stability to McjD, whereas the negatively charged lipids are essential for its function.


Sujet(s)
Transporteurs ABC/composition chimique , Antibactériens/composition chimique , Bactériocines/composition chimique , Protéines Escherichia coli/composition chimique , Escherichia coli/composition chimique , Phosphatidylglycérol/composition chimique , Transporteurs ABC/génétique , Transporteurs ABC/métabolisme , Antibactériens/métabolisme , Bactériocines/génétique , Bactériocines/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Spectrométrie de masse , Simulation de dynamique moléculaire , Phosphatidylglycérol/métabolisme , Domaines protéiques , Relation structure-activité
15.
Sci Rep ; 5: 13861, 2015 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-26350345

RÉSUMÉ

Ionizing radiation is a universal tool in tumor therapy but may also cause secondary cancers or cell invasiveness. These negative side effects could be causally related to the human-intermediate-conductance Ca2+-activated-K+-channel (hIK), which is activated by X-ray irradiation and affects cell proliferation and migration. To analyze the signaling cascade downstream of ionizing radiation we use genetically encoded reporters for H2O2 (HyPer) and for the dominant redox-buffer glutathione (Grx1-roGFP2) to monitor with high spatial and temporal resolution, radiation-triggered excursions of H2O2 in A549 and HEK293 cells. The data show that challenging cells with ≥1 Gy X-rays or with UV-A laser micro-irradiation causes a rapid rise of H2O2 in the nucleus and in the cytosol. This rise, which is determined by the rate of H2O2 production and glutathione-buffering, is sufficient for triggering a signaling cascade that involves an elevation of cytosolic Ca2+ and eventually an activation of hIK channels.


Sujet(s)
Peroxyde d'hydrogène/métabolisme , Canaux potassiques/métabolisme , Transduction du signal/effets des radiations , Rayons X , Calcium/métabolisme , Lignée cellulaire , Noyau de la cellule/métabolisme , Cytosol/métabolisme , Glutathion/métabolisme , Humains , Oxydoréduction
16.
Pflugers Arch ; 467(8): 1835-49, 2015 Aug.
Article de Anglais | MEDLINE | ID: mdl-25277267

RÉSUMÉ

To understand the impact of ionizing irradiation from diagnostics and radiotherapy on cells, we examined K(+) channel activity before and immediately after exposing cells to X-rays. Already, low dose in the cGy range caused in adenocarcinoma A549 cells within minutes a hyperpolarization following activation of the human intermediate-conductance Ca(2+)-activated K(+) channel (hIK). The response was specific for cells, which functionally expressed hIK channels and in which hIK activity was low before irradiation. HEK293 cells, which do not respond to X-ray irradiation, accordingly develop a sensitivity to this stress after heterologous expression of hIK channels. The data suggest that hIK activation involves a Ca(2+)-mediated signaling cascade because channel activation is suppressed by a strong cytosolic Ca(2+) buffer. The finding that an elevation of H2O2 causes an increase in the concentration of cytosolic Ca(2+) suggests that radicals, which emerge early in response to irradiation, trigger this Ca(2+) signaling cascade. Inhibition of hIK channels by specific blockers clotrimazole and TRAM-34 slowed cell proliferation and migration in "wound" scratch assays; ionizing irradiation, in turn, stimulated the latter process presumably via its activation of the hIK channels. These data stress an indirect radiosensitivity of hIK channels with an impact on cell differentiation.


Sujet(s)
Différenciation cellulaire/effets des radiations , Cytokines/effets des radiations , Ouverture et fermeture des portes des canaux ioniques/effets des radiations , Photons , Signalisation calcique/effets des radiations , Différenciation cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Mouvement cellulaire/effets des radiations , Cytokines/effets des médicaments et des substances chimiques , Cytokines/génétique , Cytokines/métabolisme , Cellules HEK293 , Humains , Ouverture et fermeture des portes des canaux ioniques/effets des médicaments et des substances chimiques , Potentiels de membrane , Oxydants/pharmacologie , Stress oxydatif/effets des radiations , Inhibiteurs des canaux potassiques/pharmacologie , Protéines de fusion recombinantes/métabolisme , Protéines de fusion recombinantes/effets des radiations , Facteurs temps , Transfection
17.
Biochim Biophys Acta ; 1838(4): 1096-103, 2014 Apr.
Article de Anglais | MEDLINE | ID: mdl-23791706

RÉSUMÉ

The viral channel KcvNTS belongs to the smallest K(+) channels known so far. A monomer of a functional homotetramer contains only 82 amino acids. As a consequence of the small size the protein is almost fully submerged into the membrane. This suggests that the channel is presumably sensitive to its lipid environment. Here we perform a comparative analysis for the function of the channel protein embedded in three different membrane environments. 1. Single-channel currents of KcvNTS were recorded with the patch clamp method on the plasma membrane of HEK293 cells. 2. They were also measured after reconstitution of recombinant channel protein into classical planar lipid bilayers and 3. into horizontal bilayers derived from giant unilamellar vesicles (GUVs). The recombinant channel protein was either expressed and purified from Pichia pastoris or from a cell-free expression system; for the latter a new approach with nanolipoprotein particles was used. The data show that single-channel activity can be recorded under all experimental conditions. The main functional features of the channel like a large single-channel conductance (80pS), high open-probability (>50%) and the approximate duration of open and closed dwell times are maintained in all experimental systems. An apparent difference between the approaches was only observed with respect to the unitary conductance, which was ca. 35% lower in HEK293 cells than in the other systems. The reason for this might be explained by the fact that the channel is tagged by GFP when expressed in HEK293 cells. Collectively the data demonstrate that the small viral channel exhibits a robust function in different experimental systems. This justifies an extrapolation of functional data from these systems to the potential performance of the channel in the virus/host interaction. This article is part of a Special Issue entitled: Viral Membrane Proteins-Channels for Cellular Networking.


Sujet(s)
Canaux potassiques/composition chimique , Protéines de la matrice virale/composition chimique , Séquence d'acides aminés , Cellules HEK293 , Humains , Double couche lipidique/composition chimique , Modèles biologiques , Données de séquences moléculaires , Canaux potassiques/physiologie , Protéines de la matrice virale/physiologie
18.
Solid State Nucl Magn Reson ; 22(2-3): 311-26, 2002.
Article de Anglais | MEDLINE | ID: mdl-12469817

RÉSUMÉ

The flow behavior of nematic liquid crystalline polysiloxanes of the side-chain type is studied by in situ 2H NMR spectroscopy on samples under shear in a cone-and-plate cell. The director orientation as a function of applied shear rate is determined from the quadrupole splitting of the spectra. The data analysis yields the two Leslie viscosity coefficients alpha2 and alpha3 and the flow-alignment parameter lambda = -(alpha3 + alpha2)/(alpha3 - alpha2). The values of lambda were determined for several homopolymers with only one type of side chain and random copolymers containing two different side chains. The results show that the flow behavior is related to the phase structure of the polymers, which varies with their composition. Only polymers with large amounts of smectic clusters in the nematic state show the tumbling instability (absolute value(lambda) < 1); other polymers are flow aligning (absolute value(lambda) > or = 1). For some polymers, a transition from tumbling at low temperature to flow aligning at high temperatures was observed.


Sujet(s)
Simulation numérique , Spectroscopie par résonance magnétique/instrumentation , Modèles théoriques , Polymères/composition chimique , Rhéologie/instrumentation , Deutérium , Conception d'appareillage , Spectroscopie par résonance magnétique/méthodes , Reproductibilité des résultats , Rhéologie/méthodes , Sensibilité et spécificité , Contrainte mécanique , Viscosité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...