Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Phys Chem A ; 127(48): 10307-10319, 2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-37988475

RÉSUMÉ

Kinetic Monte Carlo (KMC) has become an indispensable tool in heterogeneous catalyst discovery, but realistic simulations remain computationally demanding on account of the need to capture complex and long-range lateral interactions between adsorbates. The Zacros software package (https://zacros.org) adopts a graph-theoretical cluster expansion (CE) framework that allows such interactions to be computed with a high degree of generality and fidelity. This involves solving a series of subgraph isomorphism problems in order to identify relevant interaction patterns in the lattice. In an effort to reduce the computational burden, we have adapted two well-known subgraph isomorphism algorithms, namely, VF2 and RI, for use in KMC simulations and implemented them in Zacros. To benchmark their performance, we simulate a previously established model of catalytic NO oxidation, treating the O* lateral interactions with a series of progressively larger CEs. For CEs with long-range interactions, VF2 and RI are found to provide impressive speedups relative to simpler algorithms. RI performs best, giving speedups reaching more than 150× when combined with OpenMP parallelization. We also simulate a recently developed methane cracking model, showing that RI offers significant improvements in performance at high surface coverages.

2.
J Phys Chem C Nanomater Interfaces ; 127(18): 8591-8606, 2023 May 11.
Article de Anglais | MEDLINE | ID: mdl-37197383

RÉSUMÉ

Methane steam reforming is an important industrial process for hydrogen production, employing Ni as a low-cost, highly active catalyst, which, however, suffers from coking due to methane cracking. Coking is the accumulation of a stable poison over time, occurring at high temperatures; thus, to a first approximation, it can be treated as a thermodynamic problem. In this work, we developed an Ab initio kinetic Monte Carlo (KMC) model for methane cracking on Ni(111) at steam reforming conditions. The model captures C-H activation kinetics in detail, while graphene sheet formation is described at the level of thermodynamics, to obtain insights into the "terminal (poisoned) state" of graphene/coke within reasonable computational times. We used cluster expansions (CEs) of progressively higher fidelity to systematically assess the influence of effective cluster interactions between adsorbed or covalently bonded C and CH species on the "terminal state" morphology. Moreover, we compared the predictions of KMC models incorporating these CEs into mean-field microkinetic models in a consistent manner. The models show that the "terminal state" changes significantly with the level of fidelity of the CEs. Furthermore, high-fidelity simulations predict C-CH island/rings that are largely disconnected at low temperatures but completely encapsulate the Ni(111) surface at high temperatures.

3.
Philos Trans A Math Phys Eng Sci ; 381(2250): 20220235, 2023 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-37211035

RÉSUMÉ

Kinetic Monte Carlo (KMC) simulations have been instrumental in multiscale catalysis studies, enabling the elucidation of the complex dynamics of heterogeneous catalysts and the prediction of macroscopic performance metrics, such as activity and selectivity. However, the accessible length- and time-scales have been a limiting factor in such simulations. For instance, handling lattices containing millions of sites with 'traditional' sequential KMC implementations is prohibitive owing to large memory requirements and long simulation times. We have recently established an approach for exact, distributed, lattice-based simulations of catalytic kinetics which couples the Time-Warp algorithm with the Graph-Theoretical KMC framework, enabling the handling of complex adsorbate lateral interactions and reaction events within large lattices. In this work, we develop a lattice-based variant of the Brusselator system, a prototype chemical oscillator pioneered by Prigogine and Lefever in the late 60s, to benchmark and demonstrate our approach. This system can form spiral wave patterns, which would be computationally intractable with sequential KMC, while our distributed KMC approach can simulate such patterns 15 and 36 times faster with 625 and 1600 processors, respectively. The medium- and large-scale benchmarks thus conducted, demonstrate the robustness of the approach, and reveal computational bottlenecks that could be targeted in further development efforts. This article is part of a discussion meeting issue 'Supercomputing simulations of advanced materials'.

4.
Phys Chem Chem Phys ; 25(7): 5468-5478, 2023 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-36748393

RÉSUMÉ

Motivated by the need to perform large-scale kinetic Monte Carlo (KMC) simulations, in the context of unravelling complex phenomena such as catalyst reconstruction and pattern formation, we extend the work of Ravipati et al. [S. Ravipati, G. D. Savva, I.-A. Christidi, R. Guichard, J. Nielsen, R. Réocreux and M. Stamatakis, Comput. Phys. Commun., 2022, 270, 108148] in benchmarking the performance of a distributed-computing, on-lattice KMC approach. The latter, implemented in our software package Zacros, combines the graph-theoretical KMC framework with the Time-Warp algorithm for parallel discrete event simulations, and entails dividing the lattice into subdomains, each assigned to a processor. The cornerstone of the Time-Warp algorithm is the state queue, to which snapshots of the simulation state are saved regularly, enabling historical KMC information to be corrected when conflicts occur at subdomain boundaries. Focusing on three model systems, we highlight the key Time-Warp parameters that can be tuned to optimise performance. The frequency of state saving, controlled by the state saving interval, δsnap, is shown to have the largest effect on performance, which favours balancing the overhead of re-simulating KMC history with that of writing state snapshots to memory. Also important is the global virtual time (GVT) computation interval, ΔτGVT, which has little direct effect on the progress of the simulation but controls how often the state queue memory can be freed up. We also find that pre-allocating memory for the state queue data structure favours performance. These findings will guide users in maximising the efficiency of Zacros or other distributed KMC software, which is a vital step towards realising accurate, meso-scale simulations of heterogeneous catalysis.

5.
J Chem Phys ; 155(10): 104107, 2021 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-34525826

RÉSUMÉ

Classical molecular dynamics (MD) and imaginary-time path-integral dynamics methods underestimate the infrared absorption intensities of overtone and combination bands by typically an order of magnitude. Plé et al. [J. Chem. Phys. 155, 2863 (2021)] have shown that this is because such methods fail to describe the coupling of the centroid to the Matsubara dynamics of the fluctuation modes; classical first-order perturbation theory (PT) applied to the Matsubara dynamics is sufficient to recover most of the lost intensity in simple models and gives identical results to quantum (Rayleigh-Schrödinger) PT. Here, we show numerically that the results of this analysis can be used as post-processing correction factors, which can be applied to realistic (classical MD or path-integral dynamics) simulations of infrared spectra. We find that the correction factors recover most of the lost intensity in the overtone and combination bands of gas-phase water and ammonia and much of it for liquid water. We then re-derive and confirm the earlier PT analysis by applying canonical PT to Matsubara dynamics, which has the advantage of avoiding secular terms and gives a simple picture of the perturbed Matsubara dynamics in terms of action-angle variables. Collectively, these variables "Matsubara heat" the amplitudes of the overtone and combination vibrations of the centroid to what they would be in a classical system with the oscillators (of frequency Ωi) held at their quantum effective temperatures [of ℏΩi coth(ßℏΩi/2)/2kB]. Numerical calculations show that a similar neglect of "Matsubara heating" causes path-integral methods to underestimate Fermi resonance splittings.

7.
Faraday Discuss ; 221(0): 350-366, 2019 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-31560351

RÉSUMÉ

There are a variety of methods for including nuclear quantum effects in dynamics simulations by combining quantum Boltzmann statistics with classical dynamics. Among them are thermostatted ring-polymer molecular dynamics (TRPMD), centroid molecular dynamics (CMD), quasi-centroid molecular dynamics (QCMD), and the linearised semi-classical initial value representation (LSC-IVR). Here we make a systematic comparison of these methods by calculating the infrared spectrum of water in the gas phase, and in the liquid and ice phases (using the q-TIP4P/F model potential). Some of these results are taken from previous work, and some of them are new (including the LSC-IVR calculations for ice, and extensions of all the spectra into the near-infrared region dominated by overtone and combination bands). Our results suggest that QCMD is the best method for reproducing fundamental transitions in the spectrum, and that LSC-IVR gives the best overall description of the spectrum (albeit with large errors in the bend fundamental band caused by zero-point-energy leakage). The TRPMD method gives damped spectra that line up with the QCMD spectra, and is by far the cheapest method.

8.
J Chem Theory Comput ; 14(9): 4629-4639, 2018 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-30060649

RÉSUMÉ

Electron transfer processes are ubiquitous in chemistry and of great importance in many systems of biological and commercial interest. The ab initio description of these processes remains a challenge in theoretical chemistry, partly due to the high scaling of many post-Hartree-Fock computational methods. This poses a problem for systems of interest that are not easily investigated experimentally. We show that readily available Hartree-Fock solutions can be used as a quasidiabatic basis to understand electron transfer reactions in a Marcus framework. Nonorthogonal configuration interaction calculations can be used to quantify interactions between the resulting electronic states, and to investigate the adiabatic electron transfer process. When applied to a titanium-alizarin complex used as a model of a Grätzel-type solar cell, this approach yields a correct description of the electron transfer and provides information about the electronic states involved in the process.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...