Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 111(32): 11852-7, 2014 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-25071187

RÉSUMÉ

Understanding the mechanisms by which long-term memories are formed and stored in the brain represents a central aim of neuroscience. Prevailing theory suggests that long-term memory encoding involves early plasticity within hippocampal circuits, whereas reorganization of the neocortex is thought to occur weeks to months later to subserve remote memory storage. Here we report that long-term memory encoding can elicit early transcriptional, structural, and functional remodeling of the neocortex. Parallel studies using genome-wide RNA sequencing, ultrastructural imaging, and whole-cell recording in wild-type mice suggest that contextual fear conditioning initiates a transcriptional program in the medial prefrontal cortex (mPFC) that is accompanied by rapid expansion of the synaptic active zone and postsynaptic density, enhanced dendritic spine plasticity, and increased synaptic efficacy. To address the real-time contribution of the mPFC to long-term memory encoding, we performed temporally precise optogenetic inhibition of excitatory mPFC neurons during contextual fear conditioning. Using this approach, we found that real-time inhibition of the mPFC inhibited activation of the entorhinal-hippocampal circuit and impaired the formation of long-term associative memory. These findings suggest that encoding of long-term episodic memory is associated with early remodeling of neocortical circuits, identify the prefrontal cortex as a critical regulator of encoding-induced hippocampal activation and long-term memory formation, and have important implications for understanding memory processing in healthy and diseased brain states.


Sujet(s)
Mémoire épisodique , Néocortex/physiologie , Animaux , Conditionnement psychologique/physiologie , Cortex entorhinal/physiologie , Peur/physiologie , Hippocampe/physiologie , Mâle , Mémoire à long terme/physiologie , Souris , Microscopie électronique à transmission , Potentiels post-synaptiques miniatures/physiologie , Néocortex/ultrastructure , Plasticité neuronale/physiologie , Optogénétique , Cortex préfrontal/physiologie , Cortex préfrontal/ultrastructure , Transcriptome
2.
Cell ; 156(1-2): 261-76, 2014 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-24439381

RÉSUMÉ

Traumatic events generate some of the most enduring forms of memories. Despite the elevated lifetime prevalence of anxiety disorders, effective strategies to attenuate long-term traumatic memories are scarce. The most efficacious treatments to diminish recent (i.e., day-old) traumata capitalize on memory updating mechanisms during reconsolidation that are initiated upon memory recall. Here, we show that, in mice, successful reconsolidation-updating paradigms for recent memories fail to attenuate remote (i.e., month-old) ones. We find that, whereas recent memory recall induces a limited period of hippocampal neuroplasticity mediated, in part, by S-nitrosylation of HDAC2 and histone acetylation, such plasticity is absent for remote memories. However, by using an HDAC2-targeting inhibitor (HDACi) during reconsolidation, even remote memories can be persistently attenuated. This intervention epigenetically primes the expression of neuroplasticity-related genes, which is accompanied by higher metabolic, synaptic, and structural plasticity. Thus, applying HDACis during memory reconsolidation might constitute a treatment option for remote traumata.


Sujet(s)
Peur , Mémoire à long terme , Plasticité neuronale , Animaux , Épigenèse génétique , Hippocampe/métabolisme , Histone Deacetylase 2/métabolisme , Inhibiteurs de désacétylase d'histone/métabolisme , Inhibiteurs de désacétylase d'histone/pharmacologie , Mâle , Mémoire à long terme/effets des médicaments et des substances chimiques , Souris , Souris de lignée C57BL , Transcriptome
3.
Sci Transl Med ; 4(150): 150ra122, 2012 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-22956200

RÉSUMÉ

Aggregation of ß-amyloid (Aß) in the brain begins to occur years before the clinical onset of Alzheimer's disease (AD). Before Aß aggregation, concentrations of extracellular soluble Aß in the interstitial fluid (ISF) space of the brain, which are regulated by neuronal activity and the sleep-wake cycle, correlate with the amount of Aß deposition in the brain seen later. The amount and quality of sleep decline with normal aging and to a greater extent in AD patients. How sleep quality as well as the diurnal fluctuation in Aß change with age and Aß aggregation is not well understood. We report a normal sleep-wake cycle and diurnal fluctuation in ISF Aß in the brain of the APPswe/PS1δE9 mouse model of AD before Aß plaque formation. After plaque formation, the sleep-wake cycle markedly deteriorated and diurnal fluctuation of ISF Aß dissipated. As in mice, diurnal fluctuation of cerebrospinal fluid Aß in young adult humans with presenilin mutations was also markedly attenuated after Aß plaque formation. Virtual elimination of Aß deposits in the mouse brain by active immunization with Aß(42) normalized the sleep-wake cycle and the diurnal fluctuation of ISF Aß. These data suggest that Aß aggregation disrupts the sleep-wake cycle and diurnal fluctuation of Aß. Sleep-wake behavior and diurnal fluctuation of Aß in the central nervous system may be functional and biochemical indicators, respectively, of Aß-associated pathology.


Sujet(s)
Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/physiopathologie , Peptides bêta-amyloïdes/métabolisme , Rythme circadien/physiologie , Sommeil/physiologie , Vigilance/physiologie , Maladie d'Alzheimer/liquide cérébrospinal , Peptides bêta-amyloïdes/liquide cérébrospinal , Animaux , Modèles animaux de maladie humaine , Liquide extracellulaire/métabolisme , Gènes dominants/génétique , Hippocampe/métabolisme , Hippocampe/anatomopathologie , Humains , Immunisation , Lactates/métabolisme , Souris , Souris transgéniques , Mutation/génétique , Néostriatum/métabolisme , Néostriatum/anatomopathologie , Présénilines/génétique , Facteurs temps
4.
J Neurosci ; 32(13): 4334-40, 2012 Mar 28.
Article de Anglais | MEDLINE | ID: mdl-22457485

RÉSUMÉ

Brain region-specific deposition of extracellular amyloid plaques principally composed of aggregated amyloid-ß (Aß) peptide is a pathological signature of Alzheimer's disease (AD). Recent human neuroimaging data suggest that resting-state functional connectivity strength is reduced in patients with AD, cognitively normal elderly harboring elevated amyloid burden, and in advanced aging. Interestingly, there exists a striking spatial correlation between functional connectivity strength in cognitively normal adults and the location of Aß plaque deposition in AD. However, technical limitations have heretofore precluded examination of the relationship between functional connectivity, Aß deposition, and normal aging in mouse models. Using a novel functional connectivity optical intrinsic signal (fcOIS) imaging technique, we demonstrate that Aß deposition is associated with significantly reduced bilateral functional connectivity in multiple brain regions of older APP/PS1 transgenic mice. The amount of Aß deposition in each brain region was associated with the degree of local, age-related bilateral functional connectivity decline. Normal aging was associated with reduced bilateral functional connectivity specifically in retrosplenial cortex. Furthermore, we found that the magnitude of regional bilateral functional correlation in young APP/PS1 mice before Aß plaque formation was proportional to the amount of region-specific plaque deposition seen later in older APP/PS1 mice. Together, these findings suggest that Aß deposition and normal aging are associated with region-specific disruption of functional connectivity and that the magnitude of local bilateral functional connectivity predicts regional vulnerability to subsequent Aß deposition in mouse brain.


Sujet(s)
Peptides bêta-amyloïdes/métabolisme , Encéphale/physiopathologie , Neuroimagerie fonctionnelle/statistiques et données numériques , Voies nerveuses/physiopathologie , Plaque amyloïde/métabolisme , Vieillissement/métabolisme , Vieillissement/physiologie , Amyloïdose/métabolisme , Amyloïdose/physiopathologie , Animaux , Encéphale/métabolisme , Encéphale/anatomopathologie , Modèles animaux de maladie humaine , Neuroimagerie fonctionnelle/méthodes , Mâle , Souris , Lignées consanguines de souris , Souris transgéniques , Voies nerveuses/métabolisme
5.
Nat Neurosci ; 14(6): 750-6, 2011 Jun.
Article de Anglais | MEDLINE | ID: mdl-21532579

RÉSUMÉ

Amyloid-ß (Aß) plaque deposition in specific brain regions is a pathological hallmark of Alzheimer's disease. However, the mechanism underlying the regional vulnerability to Aß deposition in Alzheimer's disease is unknown. Herein, we provide evidence that endogenous neuronal activity regulates the regional concentration of interstitial fluid (ISF) Aß, which drives local Aß aggregation. Using in vivo microdialysis, we show that ISF Aß concentrations in several brain regions of APP transgenic mice before plaque deposition were commensurate with the degree of subsequent plaque deposition and with the concentration of lactate, a marker of neuronal activity. Furthermore, unilateral vibrissal stimulation increased ISF Aß, and unilateral vibrissal deprivation decreased ISF Aß and lactate, in contralateral barrel cortex. Long-term unilateral vibrissal deprivation decreased amyloid plaque formation and growth. Our results suggest a mechanism to account for the vulnerability of specific brain regions to Aß deposition in Alzheimer's disease.


Sujet(s)
Peptides bêta-amyloïdes/métabolisme , Cortex cérébral/anatomopathologie , Neurones/métabolisme , Privation sensorielle , Maladie d'Alzheimer , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Modèles animaux de maladie humaine , Liquide extracellulaire , Femelle , Acide lactique/métabolisme , Mâle , Souris , Souris de lignée C57BL , Souris transgéniques , Microdialyse , Plaque amyloïde/métabolisme , Plaque amyloïde/anatomopathologie , Cortex somatosensoriel/anatomopathologie
6.
Neurobiol Dis ; 37(3): 764-71, 2010 Mar.
Article de Anglais | MEDLINE | ID: mdl-20045054

RÉSUMÉ

Astrocyte dysfunction may contribute to epileptogenesis and other neurological deficits in Tuberous Sclerosis Complex (TSC). In particular, decreased expression and function of astrocyte glutamate transporters have been implicated in causing elevated extracellular glutamate levels, neuronal death, and epilepsy in a mouse model of TSC (Tsc1(GFAP)CKO mice), involving inactivation of the Tsc1 gene primarily in astrocytes. Here, we tested whether pharmacological induction of astrocyte glutamate transporter expression can prevent the neurological phenotype of Tsc1(GFAP)CKO mice. Early treatment with ceftriaxone prior to the onset of epilepsy increased expression of astrocyte glutamate transporters, decreased extracellular glutamate levels, neuronal death, and seizure frequency, and improved survival in Tsc1(GFAP)CKO mice. In contrast, late treatment with ceftriaxone after onset of epilepsy increased glutamate transporter expression, but had no effect on seizures. These results indicate that astrocyte glutamate transporters contribute to epileptogenesis in Tsc1(GFAP)CKO mice and suggest novel therapeutic strategies for epilepsy in TSC directed at astrocytes.


Sujet(s)
Astrocytes/métabolisme , Épilepsie/génétique , Épilepsie/métabolisme , Transporteur-2 d'acides aminés excitateurs/métabolisme , Complexe de la sclérose tubéreuse/complications , Complexe de la sclérose tubéreuse/génétique , Animaux , Astrocytes/effets des médicaments et des substances chimiques , Ceftriaxone/pharmacologie , Ceftriaxone/usage thérapeutique , Mort cellulaire/effets des médicaments et des substances chimiques , Mort cellulaire/physiologie , Modèles animaux de maladie humaine , Régulation négative/effets des médicaments et des substances chimiques , Régulation négative/physiologie , Épilepsie/traitement médicamenteux , Liquide extracellulaire/effets des médicaments et des substances chimiques , Liquide extracellulaire/métabolisme , Protéine gliofibrillaire acide/génétique , Acide glutamique/métabolisme , Souris , Souris knockout , Taux de survie , Complexe de la sclérose tubéreuse/physiopathologie , Protéine-1 du complexe de la sclérose tubéreuse , Protéines suppresseurs de tumeurs/génétique , Régulation positive/effets des médicaments et des substances chimiques , Régulation positive/physiologie
7.
J Neurosci ; 29(34): 10706-14, 2009 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-19710322

RÉSUMÉ

Amyloid plaques are primarily composed of extracellular aggregates of amyloid-beta (Abeta) peptide and are a pathological signature of Alzheimer's disease. However, the factors that influence the dynamics of amyloid plaque formation and growth in vivo are largely unknown. Using serial intravital multiphoton microscopy through a thinned-skull cranial window in APP/PS1 transgenic mice, we found that amyloid plaques appear and grow over a period of weeks before reaching a mature size. Growth was more prominent early after initial plaque formation: plaques grew faster in 6-month-old compared with 10-month-old mice. Plaque growth rate was also size-related, as smaller plaques exhibited more rapid growth relative to larger plaques. Alterations in interstitial Abeta concentrations were associated with changes in plaque growth. Parallel studies using multiphoton microscopy and in vivo microdialysis revealed that pharmacological reduction of soluble extracellular Abeta by as little as 20-25% was associated with a dramatic decrease in plaque formation and growth. Furthermore, this small reduction in Abeta synthesis was sufficient to reduce amyloid plaque load in 6-month-old but not 10-month-old mice, suggesting that treatment early in disease pathogenesis may be more effective than later treatment. In contrast to thinned-skull windows, no significant plaque growth was observed under open-skull windows, which demonstrated extensive microglial and astrocytic activation. Together, these findings indicate that individual amyloid plaque growth in vivo occurs over a period of weeks and may be influenced by interstitial Abeta concentration as well as reactive gliosis.


Sujet(s)
Précurseur de la protéine bêta-amyloïde/génétique , Encéphale/métabolisme , Encéphale/anatomopathologie , Plaque amyloïde/anatomopathologie , Préséniline-1/génétique , Facteurs âges , Maladie d'Alzheimer/complications , Maladie d'Alzheimer/génétique , Maladie d'Alzheimer/métabolisme , Maladie d'Alzheimer/anatomopathologie , Amyloid precursor protein secretases/pharmacologie , Peptides bêta-amyloïdes/métabolisme , Analyse de variance , Animaux , Imagerie diagnostique/méthodes , Modèles animaux de maladie humaine , Test ELISA/méthodes , Femelle , Gliose/métabolisme , Gliose/anatomopathologie , Mâle , Souris , Souris transgéniques , Microdialyse/méthodes , Photons , Plaque amyloïde/effets des médicaments et des substances chimiques , Facteurs temps
8.
Neurobiol Dis ; 35(3): 426-32, 2009 Sep.
Article de Anglais | MEDLINE | ID: mdl-19524672

RÉSUMÉ

We examined the effects of voluntary (16 weeks of wheel running) and forced (16 weeks of treadmill running) exercise on memory-related behavior, hippocampal volume, thioflavine-stained plaque number, and soluble Abeta levels in brain tissue in the Tg2576 mouse model of Alzheimer's disease (AD). Voluntary running animals spent more time investigating a novel object in a recognition memory paradigm than all other groups. Also, voluntary running animals showed fewer thioflavine S stained plaques than all other groups, whereas forced running animals showed an intermediate number of plaques between voluntary running and sedentary animals. Both voluntary and forced running animals had larger hippocampal volumes than sedentary animals. However, levels of soluble Abeta-40 or Abeta-42 did not significantly differ among groups. The results indicate that voluntary exercise may be superior to forced exercise for reducing certain aspects of AD-like deficits - i.e., plaque deposition and memory impairment, in a mouse model of AD.


Sujet(s)
Maladie d'Alzheimer/anatomopathologie , Maladie d'Alzheimer/physiopathologie , Hippocampe/anatomopathologie , Mémoire/physiologie , Conditionnement physique d'animal/physiologie , Peptides bêta-amyloïdes/métabolisme , Précurseur de la protéine bêta-amyloïde/génétique , Animaux , Benzothiazoles , Cortex cérébral/anatomopathologie , Cortex cérébral/physiopathologie , Modèles animaux de maladie humaine , Hippocampe/physiopathologie , Humains , Troubles de la mémoire/physiopathologie , Souris , Souris transgéniques , Taille d'organe , Fragments peptidiques/métabolisme , Protéase nexines , Répartition aléatoire , Récepteurs de surface cellulaire/génétique , /physiologie , Thiazoles/métabolisme , Facteurs temps
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE