Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 58
Filtrer
1.
J Sleep Res ; : e14287, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39032099

RÉSUMÉ

Narcolepsy type-1 (NT1) is a lifelong sleep disease, characterised by impairment of the orexinergic system, with a typical onset during adolescence and young adulthood. Since the wake-sleep cycle physiologically changes with ageing, this study aims to compare sleep patterns between orexin-knockout (KO) and wild type (WT) control mice at different ages. Four groups of age-matched female KO and WT mice (16 weeks of age: 8 KO-YO and 9 WT-YO mice; 87 weeks of age: 13 KO-OLD and 12 WT-OLD mice) were implanted with electrodes for discriminating wakefulness, rapid-eye-movement sleep (REMS), and non-REMS (NREMS). Mice were recorded for 48 h in their home cages and for 7 more hours into a plethysmographic chamber to characterise their sleep-breathing pattern. Regardless of orexin deficiency, OLD mice spent less time awake and had fragmentation of this behavioural state showing more bouts of shorter length than YO mice. OLD mice also had more NREMS bouts and less frequent NREMS apneas than YO mice. Regardless of age, KO mice showed cataplexy-like episodes and shorter REMS latency than WT controls and had a faster breathing rate and an increased minute ventilation during REMS. KO mice also had more wakefulness, NREMS and REMS bouts, and a shorter mean length of wakefulness bouts than WT controls. Our experiment indicated that the lack of orexins as well as ageing importantly modulate the sleep and breathing phenotype in mice. The narcoleptic phenotype caused by orexin deficiency in female mice was substantially preserved with ageing.

2.
J Sleep Res ; : e14295, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39049436

RÉSUMÉ

CDKL5 deficiency disorder is a rare genetic disease caused by mutations in the CDKL5 gene. Central apneas during wakefulness have been reported in patients with CDKL5 deficiency disorder. Studies on CDKL5-knockout mice, a CDKL5 deficiency disorder model, reported sleep apneas, but it is still unclear whether these events are central (central sleep apnea) or obstructive (obstructive sleep apnea) and may be related to alterations of brain circuits that modulate breathing rhythm. This study aimed to discriminate central sleep apnea and obstructive sleep apnea in CDKL5-knockout mice, and explore changes in the somatostatin neurons expressing high levels of neurokinin-1 receptors within the preBötzinger complex. Ten adult male wild-type and 12 CDKL5-knockout mice underwent electrode implantation for sleep stage discrimination and diaphragmatic activity recording, and were studied using whole-body plethysmography for 7 hr during the light (resting) period. Sleep apneas were categorised as central sleep apnea or obstructive sleep apnea based on the recorded signals. The number of somatostatin neurons in the preBötzinger complex and their neurokinin-1 receptors expression were assessed through immunohistochemistry in a sub-group of animals. CDKL5-knockout mice exhibited a higher apnea occurrence rate and a greater prevalence of obstructive sleep apnea during rapid eye movement sleep, compared with wild-type, whereas no significant difference was observed for central sleep apnea. Moreover, CDKL5-knockout mice showed a reduced number of somatostatin neurons in the preBötzinger complex, and these neurons expressed a lower level of neurokinin-1 receptors compared with wild-type controls. These findings underscore the pivotal role of CDKL5 in regulating normal breathing, suggesting its potential involvement in shaping preBötzinger complex neural circuitry and controlling respiratory muscles during sleep.

3.
BMC Psychol ; 12(1): 340, 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38858743

RÉSUMÉ

BACKGROUND: Sleep is vital for maintaining individuals' physical and mental health and is particularly challenged during pregnancy. More than 70% of women during the gestational period report insomnia symptoms. Sleep dysfunction in the peripartum increases the risk for a cascade of negative health outcomes during late pregnancy, birth, and postpartum. While psychological interventions are considered the first line treatment for sleep difficulties, they are still scarcely offered during pregnancy and there is a lack of longitudinal research combining psychological and physiological indices. METHODS: The present protocol outlines a randomized controlled trial aimed at testing the long-term effectiveness of an automatized digitalized psychoeducational intervention for insomnia for expectant mothers complaining insomnia symptoms without comorbidity. Outcomes include physiological, hormonal, and subjective indices of maternal psychopathology, stress, and emotional processes, and sleep and wellbeing of the family system. The trial is part of a longitudinal study evaluating expectant mothers from early pregnancy (within the 15th gestational week) to 6-months postpartum through 6 observational phases: baseline (BSL), 6- and 12-weeks from BSL (FU1-FU2), 2-to-4 weeks after delivery (FU3), and 3- and 6-months after delivery (FU4-5). We plan to recruit 38 women without sleep difficulties (Group A) and 76 women with sleep difficulties (Group B). Group B will be randomly assigned to digital psychological control intervention (B1) or experimental psychoeducational intervention targeting insomnia (B2). At 3 time points, an ecological-momentary-assessment (EMA) design will be used to collect data on sleep and emotions (diaries), sleep-wake parameters (actigraphy) and stress reactivity (salivary cortisol). We will also test the DNA methylation of genes involved in the stress response as biomarkers of prenatal poor sleep. Information on partner's insomnia symptoms and new-borns' sleep will be collected at each stage. DISCUSSION: The proposed protocol aims at testing an easily accessible evidence-based psychoeducational intervention for expectant mothers to help them improving sleep, health, and wellbeing in the peripartum. The results could improve the understanding and management of sleep difficulties and peripartum depression. TRIAL REGISTRATION: The study protocol has been registered on 22 April 2024 with ClinicalTrials.gov Protocol Registration and Results System (PRS), ID: NCT06379074. PROTOCOL VERSION: April 23, 2024.


Sujet(s)
Troubles de l'endormissement et du maintien du sommeil , Adulte , Femelle , Humains , Grossesse , Études longitudinales , Mères/psychologie , Période du postpartum/psychologie , Complications de la grossesse/thérapie , Complications de la grossesse/psychologie , Troubles de l'endormissement et du maintien du sommeil/thérapie , Troubles de l'endormissement et du maintien du sommeil/psychologie , Santé des femmes , Essais contrôlés randomisés comme sujet
4.
Nutrients ; 15(9)2023 May 08.
Article de Anglais | MEDLINE | ID: mdl-37432449

RÉSUMÉ

The increasing prevalence of overweight and obesity suggests that current strategies based on diet, exercise, and pharmacological knowledge are not sufficient to tackle this epidemic. Obesity results from a high caloric intake and energy storage, the latter by white adipose tissue (WAT), and when neither are counterbalanced by an equally high energy expenditure. As a matter of fact, current research is focused on developing new strategies to increase energy expenditure. Against this background, brown adipose tissue (BAT), whose importance has recently been re-evaluated via the use of modern positron emission techniques (PET), is receiving a great deal of attention from research institutions worldwide, as its main function is to dissipate energy in the form of heat via a process called thermogenesis. A substantial reduction in BAT occurs during normal growth in humans and hence it is not easily exploitable. In recent years, scientific research has made great strides and investigated strategies that focus on expanding BAT and activating the existing BAT. The present review summarizes current knowledge about the various molecules that can be used to promote white-to-brown adipose tissue conversion and energy expenditure in order to assess the potential role of thermogenic nutraceuticals. This includes tools that could represent, in the future, a valid weapon against the obesity epidemic.


Sujet(s)
Obésité , Surpoids , Humains , Obésité/épidémiologie , Obésité/thérapie , Adipocytes , Tissu adipeux brun , Tissu adipeux blanc
5.
Epilepsia ; 64(8): 1991-2005, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37212716

RÉSUMÉ

Epilepsy is a common neurological disorder, affecting patients of all ages, reducing the quality of life, and associated with several comorbidities. Sleep impairment is a frequent condition in patients with epilepsy (PWE), and the relation between sleep and epilepsy has been considered bidirectional, as one can significantly influence the other, and vice versa. The orexin system was described more than 20 years ago and is implicated in several neurobiological functions other than in controlling the sleep-wake cycle. Considering the relation between epilepsy and sleep, and the significant contribution of the orexin system in regulating the sleep-wake cycle, it is conceivable that the orexin system may be affected in PWE. Preclinical studies investigated the impact of the orexin system on epileptogenesis and the effect of orexin antagonism on seizures in animal models. Conversely, clinical studies are few and propose heterogeneous results also considering the different methodological approaches to orexin levels quantification (cerebrospinal-fluid or blood samples). Because orexin system activity can be modulated by sleep, and considering the sleep impairment documented in PWE, the recently approved dual orexin receptor antagonists (DORAs) have been suggested for treating sleep impairment and insomnia in PWE. Accordingly, sleep improvement can be a therapeutic strategy for reducing seizures and better managing epilepsy. The present review analyzes the preclinical and clinical evidence linking the orexin system to epilepsy, and hypothesizes a model in which the antagonism to the orexin system by DORAs can improve epilepsy by both a direct and a sleep-mediated (indirect) effect.


Sujet(s)
Épilepsie , Qualité de vie , Animaux , Orexines , Récepteurs des orexines/physiologie , Sommeil/physiologie , Épilepsie/complications , Épilepsie/traitement médicamenteux , Antagonistes des récepteurs des orexines/usage thérapeutique , Antagonistes des récepteurs des orexines/pharmacologie , Crises épileptiques/traitement médicamenteux
6.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article de Anglais | MEDLINE | ID: mdl-36982627

RÉSUMÉ

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/- female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/- mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/- hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.


Sujet(s)
Trouble autistique , Syndromes épileptiques , Spasmes infantiles , Femelle , Animaux , Souris , Spasmes infantiles/traitement médicamenteux , Syndromes épileptiques/traitement médicamenteux , Encéphale/métabolisme , Trouble autistique/métabolisme , Protein-Serine-Threonine Kinases/génétique , Protein-Serine-Threonine Kinases/métabolisme
7.
Neurotherapeutics ; 19(6): 1886-1904, 2022 10.
Article de Anglais | MEDLINE | ID: mdl-36109452

RÉSUMÉ

Although delivery of a wild-type copy of the mutated gene to cells represents the most effective approach for a monogenic disease, proof-of-concept studies highlight significant efficacy caveats for treatment of brain disorders. Herein, we develop a cross-correction-based strategy to enhance the efficiency of a gene therapy for CDKL5 deficiency disorder, a severe neurodevelopmental disorder caused by CDKL5 gene mutations. We created a gene therapy vector that produces an Igk-TATk-CDKL5 fusion protein that can be secreted via constitutive secretory pathways and, due to the cell-penetration property of the TATk peptide, internalized by cells. We found that, although AAVPHP.B_Igk-TATk-CDKL5 and AAVPHP.B_CDKL5 vectors had similar brain infection efficiency, the AAVPHP.B_Igk-TATk-CDKL5 vector led to higher CDKL5 protein replacement due to secretion and penetration of the TATk-CDKL5 protein into the neighboring cells. Importantly, Cdkl5 KO mice treated with the AAVPHP.B_Igk-TATk-CDKL5 vector showed a behavioral and neuroanatomical improvement in comparison with vehicle or AAVPHP.B_CDKL5 vector-treated Cdkl5 KO mice. In conclusion, we provide the first evidence that a gene therapy based on a cross-correction approach is more effective at compensating Cdkl5-null brain defects than gene therapy based on the expression of the native CDKL5, opening avenues for the development of this innovative approach for other monogenic diseases.


Sujet(s)
Protein-Serine-Threonine Kinases , Spasmes infantiles , Animaux , Souris , Souris knockout , Protein-Serine-Threonine Kinases/génétique , Spasmes infantiles/génétique , Spasmes infantiles/thérapie , Spasmes infantiles/métabolisme , Thérapie génétique
8.
Cells ; 11(6)2022 03 17.
Article de Anglais | MEDLINE | ID: mdl-35326477

RÉSUMÉ

BACKGROUND: Anti-IgLON5 disease is a rare late-onset neurological disease associated with autoantibodies against IgLON5, neuronal accumulation of phosphorylated Tau protein (p-Tau), and sleep, respiratory, and motor alterations. PURPOSE: We performed a pilot study of whether the neuropathological and clinical features of anti-IgLON5 disease may be recapitulated in mice with chronic intracerebroventricular infusion of human anti-IgLON5 disease IgG (Pt-IgG). METHODS: Humanized transgenic hTau mice expressing human Tau protein and wild-type (WT) control mice were infused intracerebroventricularly with Pt-IgG or with antibodies from a control subject for 14 days. The sleep, respiratory, and motor phenotype was evaluated at the end of the antibody infusion and at least 30 days thereafter, followed by immunohistochemical assessment of p-Tau deposition. RESULTS: In female hTau and WT mice infused with Pt-IgG, we found reproducible trends of diffuse neuronal cytoplasmic p-Tau deposits in the brainstem and hippocampus, increased ventilatory period during sleep, and decreased inter-lick interval during wakefulness. These findings were not replicated on male hTau mice. CONCLUSION: The results of our pilot study suggest, but do not prove, that chronic ICV infusion of mice with Pt-IgG may elicit neuropathological, respiratory, and motor alterations. These results should be considered as preliminary until replicated in larger studies taking account of potential sex differences in mice.


Sujet(s)
Syndrome d'apnées obstructives du sommeil , Protéines tau , Animaux , Autoanticorps/métabolisme , Molécules d'adhérence cellulaire neuronale/métabolisme , Encéphalite , Femelle , Maladie de Hashimoto , Humains , Immunoglobuline G , Perfusions intraventriculaires , Mâle , Souris , Projets pilotes , Protéines tau/métabolisme
9.
Sci Rep ; 11(1): 23897, 2021 12 13.
Article de Anglais | MEDLINE | ID: mdl-34903845

RÉSUMÉ

Early-life exposure to environmental toxins like tobacco can permanently re-program body structure and function. Here, we investigated the long-term effects on mouse adult sleep phenotype exerted by early-life exposure to nicotine or to its principal metabolite, cotinine. Moreover, we investigated whether these effects occurred together with a reprogramming of the activity of the hippocampus, a key structure to coordinate the hormonal stress response. Adult male mice born from dams subjected to nicotine (NIC), cotinine (COT) or vehicle (CTRL) treatment in drinking water were implanted with electrodes for sleep recordings. NIC and COT mice spent significantly more time awake than CTRL mice at the transition between the rest (light) and the activity (dark) period. NIC and COT mice showed hippocampal glucocorticoid receptor (GR) downregulation compared to CTRL mice, and NIC mice also showed hippocampal mineralocorticoid receptor downregulation. Hippocampal GR expression significantly and inversely correlated with the amount of wakefulness at the light-to-dark transition, while no changes in DNA methylation were found. We demonstrated that early-life exposure to nicotine (and cotinine) concomitantly entails long-lasting reprogramming of hippocampal activity and sleep phenotype suggesting that the adult sleep phenotype may be modulated by events that occurred during that critical period of life.


Sujet(s)
Cotinine/toxicité , Hippocampe/effets des médicaments et des substances chimiques , Nicotine/toxicité , Récepteurs aux glucocorticoïdes/métabolisme , Troubles de la veille et du sommeil/métabolisme , Animaux , Régulation négative , Hippocampe/croissance et développement , Hippocampe/métabolisme , Mâle , Souris , Souris de lignée C57BL , Neurogenèse , Récepteurs aux glucocorticoïdes/génétique , Troubles de la veille et du sommeil/étiologie , Pollution par la fumée de tabac/effets indésirables
10.
Neurobiol Dis ; 159: 105508, 2021 11.
Article de Anglais | MEDLINE | ID: mdl-34509609

RÉSUMÉ

STUDY OBJECTIVES: The use of mouse models in sleep apnea study is limited by the belief that central (CSA) but not obstructive sleep apneas (OSA) occur in rodents. We aimed to develop a protocol to investigate the presence of OSAs in wild-type mice and, then, to apply it to a validated model of Down syndrome (Ts65Dn), a human pathology characterized by a high incidence of OSAs. METHODS: In a pilot study, nine C57BL/6J wild-type mice were implanted with electrodes for electroencephalography (EEG), neck electromyography (nEMG), and diaphragmatic activity (DIA), and then placed in a whole-body-plethysmographic (WBP) chamber for 8 h during the rest (light) phase to simultaneously record sleep and breathing activity. CSA and OSA were discriminated on the basis of WBP and DIA signals recorded simultaneously. The same protocol was then applied to 12 Ts65Dn mice and 14 euploid controls. RESULTS: OSAs represented about half of the apneic events recorded during rapid-eye-movement-sleep (REMS) in each experimental group, while the majority of CSAs were found during non-rapid eye movement sleep. Compared with euploid controls, Ts65Dn mice had a similar total occurrence rate of apneic events during sleep, but a significantly higher occurrence rate of OSAs during REMS, and a significantly lower occurrence rate of CSAs during NREMS. CONCLUSIONS: Mice physiologically exhibit both CSAs and OSAs. The latter appear almost exclusively during REMS, and are highly prevalent in Ts65Dn. Mice may, thus, represent a useful model to accelerate the understanding of the pathophysiology and genetics of sleep-disordered breathing and to help the development of new therapies.


Sujet(s)
Syndrome de Down/physiopathologie , Apnée centrale du sommeil/physiopathologie , Syndrome d'apnées obstructives du sommeil/physiopathologie , Sommeil paradoxal/physiologie , Animaux , Modèles animaux de maladie humaine , Électroencéphalographie , Électromyographie , Souris , Projets pilotes , Pléthysmographie du corps entier
11.
Front Neurosci ; 15: 660518, 2021.
Article de Anglais | MEDLINE | ID: mdl-34093114

RÉSUMÉ

The loss of hypothalamic neurons that produce wake-promoting orexin (hypocretin) neuropeptides is responsible for narcolepsy type 1 (NT1). While the number of histamine neurons is increased in patients with NT1, results on orexin-deficient mouse models of NT1 are inconsistent. On the other hand, the effect of histamine deficiency on orexin neuron number has never been tested on mammals, even though histamine has been reported to be essential for the development of a functional orexin system in zebrafish. The aim of this study was to test whether histamine neurons are increased in number in orexin-deficient mice and whether orexin neurons are decreased in number in histamine-deficient mice. The hypothalamic neurons expressing L-histidine decarboxylase (HDC), the histamine synthesis enzyme, and those expressing orexin A were counted in four orexin knock-out mice, four histamine-deficient HDC knock-out mice, and four wild-type C57BL/6J mice. The number of HDC-positive neurons was significantly higher in orexin knock-out than in wild-type mice (2,502 ± 77 vs. 1,800 ± 213, respectively, one-tailed t-test, P = 0.011). Conversely, the number of orexin neurons was not significantly lower in HDC knock-out than in wild-type mice (2,306 ± 56 vs. 2,320 ± 120, respectively, one-tailed t-test, P = 0.459). These data support the view that orexin peptide deficiency is sufficient to increase histamine neuron number, supporting the involvement of the histamine waking system in the pathophysiology of NT1. Conversely, these data do not support a significant role of histamine in orexin neuron development in mammals.

12.
Aging Dis ; 12(3): 764-785, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-34094641

RÉSUMÉ

CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disease caused by mutations in the X-linked CDKL5 gene. Children affected by CDD display a clinical phenotype characterized by early-onset epilepsy, intellectual disability, motor impairment, and autistic-like features. Although the clinical aspects associated with CDKL5 mutations are well described in children, adults with CDD are still under-characterized. Similarly, most animal research has been carried out on young adult Cdkl5 knockout (KO) mice only. Since age represents a risk factor for the worsening of symptoms in many neurodevelopmental disorders, understanding age differences in the development of behavioral deficits is crucial in order to optimize the impact of therapeutic interventions. Here, we compared young adult Cdkl5 KO mice with middle-aged Cdkl5 KO mice, at a behavioral, neuroanatomical, and molecular level. We found an age-dependent decline in motor, cognitive, and social behaviors in Cdkl5 KO mice, as well as in breathing and sleep patterns. The behavioral decline in older Cdkl5 KO mice was not associated with a worsening of neuroanatomical alterations, such as decreased dendritic arborization or spine density, but was paralleled by decreased neuronal survival in different brain regions such as the hippocampus, cortex, and basal ganglia. Interestingly, we found increased ß-galactosidase activity and DNA repair protein levels, γH2AX and XRCC5, in the brains of older Cdkl5 KO mice, which suggests that an absence of Cdkl5 accelerates neuronal senescence/death by triggering irreparable DNA damage. In summary, this work provides evidence that CDKL5 may play a fundamental role in neuronal survival during brain aging and suggests a possible worsening with age of the clinical picture in CDD patients.

13.
Sleep ; 44(7)2021 07 09.
Article de Anglais | MEDLINE | ID: mdl-33517440

RÉSUMÉ

STUDY OBJECTIVES: Increase in arterial pressure (AP) during sleep and smaller differences in AP between sleep and wakefulness have been reported in orexin (hypocretin)-deficient mouse models of narcolepsy type 1 (NT1) and confirmed in NT1 patients. We tested whether these alterations are mediated by parasympathetic or sympathetic control of the heart and/or resistance vessels in an orexin-deficient mouse model of NT1. METHODS: Thirteen orexin knock-out (ORX-KO) mice were compared with 12 congenic wild-type (WT) mice. The electroencephalogram, electromyogram, and AP of the mice were recorded in the light (rest) period during intraperitoneal infusion of atropine methyl nitrate, atenolol, or prazosin to block muscarinic cholinergic, ß 1-adrenergic, or α 1-adrenergic receptors, respectively, while saline was infused as control. RESULTS: AP significantly depended on a three-way interaction among the mouse group (ORX-KO vs WT), the wake-sleep state, and the drug or vehicle infused. During the control vehicle infusion, ORX-KO had significantly higher AP values during REM sleep, smaller decreases in AP from wakefulness to either non-rapid-eye-movement (non-REM) sleep or REM sleep, and greater increases in AP from non-REM sleep to REM sleep compared to WT. These differences remained significant with atropine methyl nitrate, whereas they were abolished by prazosin and, except for the smaller AP decrease from wakefulness to REM sleep in ORX-KO, also by atenolol. CONCLUSIONS: Sleep-related alterations of AP due to orexin deficiency significantly depend on alterations in cardiovascular sympathetic control in a mouse model of NT1.


Sujet(s)
Narcolepsie , Neuropeptides , Animaux , Pression sanguine , Humains , Protéines et peptides de signalisation intracellulaire , Souris , Souris knockout , Orexines , Sommeil , Vigilance
14.
J Sleep Res ; 30(4): e13255, 2021 08.
Article de Anglais | MEDLINE | ID: mdl-33314463

RÉSUMÉ

Antihistamine medications have been suggested to elicit clinical features of restless legs syndrome. The available data are limited, particularly concerning periodic leg movements during sleep, which are common in restless legs syndrome and involve bursts of tibialis anterior electromyogram. Here, we tested whether the occurrence of tibialis anterior electromyogram bursts during non-rapid eye movement sleep is altered in histidine decarboxylase knockout mice with congenital histamine deficiency compared with that in wild-type control mice. We implanted six histidine decarboxylase knockout and nine wild-type mice to record neck muscle electromyogram, bilateral tibialis anterior electromyogram, and electroencephalogram during the rest (light) period. The histidine decarboxylase knockout and wild-type mice did not differ significantly in terms of sleep architecture. In both histidine decarboxylase knockout and wild-type mice, the distribution of intervals between tibialis anterior electromyogram bursts had a single peak for intervals < 10 s. The total occurrence rate of tibialis anterior electromyogram bursts during non-rapid eye movement sleep and the occurrence rate of the tibialis anterior electromyogram bursts separated by intervals < 10 s were significantly lower in histidine decarboxylase knockout than in wild-type mice. These data do not support the hypothesis that preventing brain histamine signalling may promote restless legs syndrome. Rather, the data suggest that limb movements during sleep, including those separated by short intervals, are a manifestation of subcortical arousal requiring the integrity of brain histamine signalling.


Sujet(s)
Électromyographie , Membres/physiologie , Histamine/déficit , Syndrome des jambes sans repos/physiopathologie , Sommeil/physiologie , Animaux , Éveil , Femelle , Histamine/métabolisme , Histidine decarboxylase/déficit , Histidine decarboxylase/génétique , Souris , Souris de lignée C57BL , Souris knockout , Transduction du signal
15.
Eur J Neurosci ; 53(4): 1136-1154, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33290595

RÉSUMÉ

Neuropeptides orexin A and B (OX-A/B, also called hypocretin 1 and 2) are released selectively by a population of neurons which projects widely into the entire central nervous system but is localized in a restricted area of the tuberal region of the hypothalamus, caudal to the paraventricular nucleus. The OX system prominently targets brain structures involved in the regulation of wake-sleep state switching, and also orchestrates multiple physiological functions. The degeneration and dysregulation of the OX system promotes narcoleptic phenotypes both in humans and animals. Hence, this review begins with the already proven involvement of OX in narcolepsy, but it mainly discusses the new pre-clinical and clinical insights of the role of OX in three major neurological disorders characterized by sleep impairment which have been recently associated with OX dysfunction, such as Alzheimer's disease, stroke and Prader Willi syndrome, and have been emerged over the past 10 years to be strongly associated with the OX dysfunction and should be more considered in the future. In the light of the impairment of the OX system in these neurological disorders, it is conceivable to speculate that the integrity of the OX system is necessary for a healthy functioning body.


Sujet(s)
Narcolepsie , Neuropeptides , Animaux , Humains , Hypothalamus/métabolisme , Protéines et peptides de signalisation intracellulaire , Neuropeptides/métabolisme , Orexines
16.
JCI Insight ; 5(12)2020 06 18.
Article de Anglais | MEDLINE | ID: mdl-32365348

RÉSUMÉ

Imprinted genes are highly expressed in the hypothalamus; however, whether specific imprinted genes affect hypothalamic neuromodulators and their functions is unknown. It has been suggested that Prader-Willi syndrome (PWS), a neurodevelopmental disorder caused by lack of paternal expression at chromosome 15q11-q13, is characterized by hypothalamic insufficiency. Here, we investigate the role of the paternally expressed Snord116 gene within the context of sleep and metabolic abnormalities of PWS, and we report a significant role of this imprinted gene in the function and organization of the 2 main neuromodulatory systems of the lateral hypothalamus (LH) - namely, the orexin (OX) and melanin concentrating hormone (MCH) - systems. We observed that the dynamics between neuronal discharge in the LH and the sleep-wake states of mice with paternal deletion of Snord116 (PWScrm+/p-) are compromised. This abnormal state-dependent neuronal activity is paralleled by a significant reduction in OX neurons in the LH of mutant mice. Therefore, we propose that an imbalance between OX- and MCH-expressing neurons in the LH of mutant mice reflects a series of deficits manifested in the PWS, such as dysregulation of rapid eye movement (REM) sleep, food intake, and temperature control.


Sujet(s)
Comportement animal/physiologie , Aire hypothalamique latérale/métabolisme , Hypothalamus/métabolisme , Orexines/métabolisme , Petit ARN nucléolaire/génétique , Sommeil/physiologie , Animaux , Modèles animaux de maladie humaine , Comportement alimentaire , Aire hypothalamique latérale/physiopathologie , Hormones hypothalamiques/métabolisme , Mélanines/métabolisme , Souris , Neurones/métabolisme , Hormones hypophysaires/métabolisme , Syndrome de Prader-Willi/métabolisme , Syndrome de Prader-Willi/physiopathologie
17.
J Comp Physiol B ; 190(4): 493-507, 2020 07.
Article de Anglais | MEDLINE | ID: mdl-32399793

RÉSUMÉ

Under conditions of scarce food availability and cool ambient temperature, the mouse (Mus Musculus) enters into torpor, a state of transient metabolic suppression mediated in part by the autonomic nervous system. Hypothalamic orexins are involved in the coordination of behaviors and autonomic function. We tested whether orexins are necessary for the coordinated changes in physiological variables, which underlie torpor and represent its physiological signature. We performed simultaneous measurements of brain temperature, electroencephalographic, and electromyographic activity allowing objective assessment of wake-sleep behavior, and cardiovascular, respiratory, and metabolic variables in orexin knockout mice (ORX-KO) and wild-type mice (WT) during torpor bouts elicited by caloric restriction and mild cold stress. We found that torpor bouts in WT are characterized by an exquisitely coordinated physiological signature. The characteristics of torpor bouts in terms of duration and rate of change of brain temperature and electromyographic activity at torpor entrance and exit did not differ significantly between ORX-KO and WT, and neither did the cardiovascular, respiratory, and metabolic characteristics of torpor. ORX-KO and WT also had similar wake-sleep state changes associated with torpor bouts, with the exception of a significantly higher rapid-eye movement sleep time in ORX-KO at torpor entrance. Our results demonstrate that orexins are not necessary either for the normal physiological adaptations occurring during torpor in mice or for their coordination, suggesting that mechanisms different from orexin peptide signaling may be involved in the regulation and the coordination of these physiological responses.


Sujet(s)
Torpeur/physiologie , Animaux , Encéphale/physiologie , Électroencéphalographie , Électromyographie , Femelle , Souris de lignée C57BL , Souris knockout , Orexines/génétique , Orexines/physiologie , Consommation d'oxygène , Sommeil/physiologie , Vigilance/physiologie
18.
J Exp Biol ; 223(Pt 13)2020 06 30.
Article de Anglais | MEDLINE | ID: mdl-32457059

RÉSUMÉ

The loss of orexinergic neurons, which release orexins, results in narcolepsy. Orexins participate in the regulation of many physiological functions, and their role as wake-promoting molecules has been widely described. Less is known about the involvement of orexins in body temperature and respiratory regulation. The aim of this study was to investigate if orexin peptides modulate respiratory regulation as a function of ambient temperature (Ta) during different sleep stages. Respiratory phenotype of male orexin knockout (KO-ORX, N=9) and wild-type (WT, N=8) mice was studied at thermoneutrality (Ta=30°C) or during mild cold exposure (Ta=20°C) inside a whole-body plethysmography chamber. The states of wakefulness (W), non-rapid eye movement sleep (NREMS) and rapid eye movement sleep (REMS) were scored non-invasively, using a previously validated technique. In both WT and KO-ORX mice, Ta strongly and significantly affected ventilatory period and minute ventilation values during NREMS and REMS; moreover, the occurrence rate of sleep apneas in NREMS was significantly reduced at Ta=20°C compared with Ta=30°C. Overall, there were no differences in respiratory regulation during sleep between WT and KO-ORX mice, except for sigh occurrence rate, which was significantly increased at Ta=20°C compared with Ta=30°C in WT mice, but not in KO-ORX mice. These results do not support a main role for orexin peptides in the temperature-dependent modulation of respiratory regulation during sleep. However, we showed that the occurrence rate of sleep apneas critically depends on Ta, without any significant effect of orexin peptides.


Sujet(s)
Neuropeptides , Animaux , Protéines et peptides de signalisation intracellulaire/génétique , Mâle , Souris , Souris knockout , Neuropeptides/génétique , Orexines , Phénotype , Sommeil , Température , Vigilance
19.
Sci Rep ; 10(1): 4263, 2020 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-32123260

RÉSUMÉ

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

20.
Clin Exp Pharmacol Physiol ; 47(2): 281-285, 2020 02.
Article de Anglais | MEDLINE | ID: mdl-31625617

RÉSUMÉ

The Raphe Pallidus (RPa) is a region of the brainstem that was shown to modulate the sympathetic outflow to many tissues and organs involved in thermoregulation and energy expenditure. In rodents, the pharmacological activation of RPa neurons was shown to increase the activity of the brown adipose tissue, heart rate, and expired CO2 , whereas their inhibition was shown to induce cutaneous vasodilation and a state of hypothermia that, when prolonged, leads to a state resembling torpor referred to as synthetic torpor. If translatable to humans, this synthetic torpor-inducing procedure would be advantageous in many clinical settings. A first step to explore such translatability, has been to verify whether the neurons within the RPa play the same role described for rodents in a larger mammal such as the pig. In the present study, we show that the physiological responses inducible by the pharmacological stimulation of RPa neurons are very similar to those observed in rodents. Injection of the GABAA agonist GABAzine in the RPa induced an increase in heart rate (from 99 to 174 bpm), systolic (from 87 to 170 mm Hg) and diastolic (from 51 to 98 mm Hg) arterial pressure, and end-tidal CO2 (from 49 to 62 mm Hg). All these changes were reversed by the injection in the same area of the GABAA agonist muscimol. These results support the possibility for RPa neurons to be a key target in the research for a safe and effective procedure for the induction of synthetic torpor in humans.


Sujet(s)
Agents du système nerveux autonome/pharmacologie , Neurones/effets des médicaments et des substances chimiques , Neurones/physiologie , Noyau pâle du raphé/effets des médicaments et des substances chimiques , Noyau pâle du raphé/physiologie , Facteurs âges , Animaux , Femelle , Antagonistes GABA/administration et posologie , Agonistes du récepteur GABA-A/administration et posologie , Rythme cardiaque/effets des médicaments et des substances chimiques , Rythme cardiaque/physiologie , Microinjections/méthodes , Pyridazines/administration et posologie , Frissonnement/effets des médicaments et des substances chimiques , Frissonnement/physiologie , Suidae
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE