Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 15(1): 4872, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38849331

RÉSUMÉ

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that, to our knowledge, has not been investigated in these species-the connections between projection neurons and the Kenyon cells of the mushroom body-and identify species-specific connectivity patterns. We found that neurons encoding food odors connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific connectivity differences reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.


Sujet(s)
Évolution biologique , Drosophila , Corps pédonculés , Spécificité d'espèce , Animaux , Corps pédonculés/physiologie , Corps pédonculés/cytologie , Corps pédonculés/anatomie et histologie , Drosophila/physiologie , Drosophila/anatomie et histologie , Neurones/physiologie , Drosophila melanogaster/physiologie , Drosophila melanogaster/anatomie et histologie , Phylogenèse , Odorat/physiologie , Odorisants , Voies olfactives/physiologie , Voies olfactives/anatomie et histologie , Mâle , Femelle , Terminaisons présynaptiques/physiologie
2.
Nat Commun ; 14(1): 999, 2023 03 08.
Article de Anglais | MEDLINE | ID: mdl-36890170

RÉSUMÉ

Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.


Sujet(s)
Actines , Tyrosine-tRNA ligase , Animaux , Humains , Actines/métabolisme , Maladie de Charcot-Marie-Tooth/génétique , Drosophila/génétique , Glycine-tRNA ligase/génétique , Mutation , ARN de transfert , Tyrosine-tRNA ligase/génétique , Tyrosine-tRNA ligase/métabolisme , Lignée cellulaire tumorale
3.
bioRxiv ; 2023 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-36798335

RÉSUMÉ

Brain evolution has primarily been studied at the macroscopic level by comparing the relative size of homologous brain centers between species. How neuronal circuits change at the cellular level over evolutionary time remains largely unanswered. Here, using a phylogenetically informed framework, we compare the olfactory circuits of three closely related Drosophila species that differ radically in their chemical ecology: the generalists Drosophila melanogaster and Drosophila simulans that feed on fermenting fruit, and Drosophila sechellia that specializes on ripe noni fruit. We examine a central part of the olfactory circuit that has not yet been investigated in these species - the connections between the projection neurons of the antennal lobe and the Kenyon cells of the mushroom body, an associative brain center - to identify species-specific connectivity patterns. We found that neurons encoding food odors - the DC3 neurons in D. melanogaster and D. simulans and the DL2d neurons in D. sechellia - connect more frequently with Kenyon cells, giving rise to species-specific biases in connectivity. These species-specific differences in connectivity reflect two distinct neuronal phenotypes: in the number of projection neurons or in the number of presynaptic boutons formed by individual projection neurons. Finally, behavioral analyses suggest that such increased connectivity enhances learning performance in an associative task. Our study shows how fine-grained aspects of connectivity architecture in an associative brain center can change during evolution to reflect the chemical ecology of a species.

4.
Nat Cell Biol ; 25(3): 467-480, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36690850

RÉSUMÉ

Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.


Sujet(s)
Petites protéines du choc thermique , Petites protéines du choc thermique/génétique , Petites protéines du choc thermique/métabolisme , Chaperons moléculaires/génétique , Mitochondries/génétique , Mitochondries/métabolisme , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme
5.
Nat Commun ; 10(1): 5045, 2019 11 06.
Article de Anglais | MEDLINE | ID: mdl-31695036

RÉSUMÉ

Charcot-Marie-Tooth disease (CMT) is a length-dependent peripheral neuropathy. The aminoacyl-tRNA synthetases constitute the largest protein family implicated in CMT. Aminoacyl-tRNA synthetases are predominantly cytoplasmic, but are also present in the nucleus. Here we show that a nuclear function of tyrosyl-tRNA synthetase (TyrRS) is implicated in a Drosophila model of CMT. CMT-causing mutations in TyrRS induce unique conformational changes, which confer capacity for aberrant interactions with transcriptional regulators in the nucleus, leading to transcription factor E2F1 hyperactivation. Using neuronal tissues, we reveal a broad transcriptional regulation network associated with wild-type TyrRS expression, which is disturbed when a CMT-mutant is expressed. Pharmacological inhibition of TyrRS nuclear entry with embelin reduces, whereas genetic nuclear exclusion of mutant TyrRS prevents hallmark phenotypes of CMT in the Drosophila model. These data highlight that this translation factor may contribute to transcriptional regulation in neurons, and suggest a therapeutic strategy for CMT.


Sujet(s)
Amino acyl-tRNA synthetases/métabolisme , Noyau de la cellule/métabolisme , Maladie de Charcot-Marie-Tooth/métabolisme , Prédisposition génétique à une maladie , Amino acyl-tRNA synthetases/génétique , Animaux , Animal génétiquement modifié , Comportement animal , Noyau de la cellule/enzymologie , Maladie de Charcot-Marie-Tooth/génétique , Modèles animaux de maladie humaine , Drosophila , Protéines de Drosophila/métabolisme , Femelle , Cellules HEK293 , Humains , Larve , Mâle , Mutation , Maladies du système nerveux , Jonction neuromusculaire , Neurones/métabolisme , Phénotype , Facteurs de transcription/métabolisme
6.
Hum Mutat ; 36(3): 287-91, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25512093

RÉSUMÉ

The heavy chain 1 of cytoplasmic dynein (DYNC1H1) is responsible for movement of the motor complex along microtubules and recruitment of dynein components. Mutations in DYNC1H1 are associated with spinal muscular atrophy (SMA), hereditary motor and sensory neuropathy (HMSN), cortical malformations, or a combination of these. Combining linkage analysis and whole-exome sequencing, we identified a novel dominant defect in the DYNC1H1 tail domain (c.1792C>T, p.Arg598Cys) causing axonal HMSN. Mutation analysis of the tail region in 355 patients identified a de novo mutation (c.791G>T, p.Arg264Leu) in an isolated SMA patient. Her phenotype was more severe than previously described, characterized by multiple congenital contractures and delayed motor milestones, without brain malformations. The mutations in DYNC1H1 increase the interaction with its adaptor BICD2. This relates to previous studies on BICD2 mutations causing a highly similar phenotype. Our findings broaden the genetic heterogeneity and refine the clinical spectrum of DYNC1H1, and have implications for molecular diagnostics of motor neuron diseases.


Sujet(s)
Maladie de Charcot-Marie-Tooth/génétique , Dynéines cytoplasmiques/génétique , Dynéines/métabolisme , Amyotrophie spinale/génétique , Mutation , Maladie de Charcot-Marie-Tooth/physiopathologie , Dynéines cytoplasmiques/métabolisme , Humains , Protéines associées aux microtubules/métabolisme , Amyotrophie spinale/physiopathologie , Structure tertiaire des protéines/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...