Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Luminescence ; 38(10): 1789-1802, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37495554

RÉSUMÉ

Yellowish-white light-emitting Gd2-x Si2 O7 :xDy3+ (x = 1-5 mol%) nanophosphors were prepared using a solution combustion synthesis method. Fluorescence spectrophotometry and X-ray diffraction measurements were performed to scrutinize the optical performances and phase recognition of the designated nanophosphors. The outcomes specified that the prepared phosphors were crystallized into a triclinic phase with a P-1 space group. As the concentration of Dy3+ ions was increased, the unit-cell volume decrease proportionally due to the replacement of large-sized Gd3+ by small-sized Dy3+ ions. Under ultraviolet excitation at 349 nm, emission spectra consisted of two pronounced emission lines at ~482 nm (blue line), ~578 nm (yellow line), and a relatively weaker emission at ~670 nm (red line) due to 4 F9/2 →6 H15/2 , 4 F9/2 →6 H13/2 , and 4 F9/2 →6 H11/2 intraconfigurational transitions of Dy3+ ions, respectively. The evidence about the site symmetry around Dy3+ ions was examined by considering the ratio of yellow-to-blue emission intensity. The observed critical distance (Rc ) value was ~20.56 Å (≫5 Å), which signified that energy transfer primarily occurred due to multipolar interaction. The obtained coordinates were close to the white region of the Commission Internationale de l'Éclairage chromaticity diagram, which marked a significant milestone in the development of white light-emitting diodes.

2.
Luminescence ; 38(5): 585-599, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-36929247

RÉSUMÉ

Terbium(III)-doped yttrium aluminate perovskite (YAP:xTb3+ ) (x = 0.01-0.08 mol) was synthesized using a simple gel-combustion method. Structural elucidations were performed using X-ray diffraction (XRD) and Rietveld analysis. Fourier-transform infrared spectral studies validated the efficient synthesis of designed doped samples. Transmission electron microscopic images showed the agglomerated irregular dimensions of the synthesized nanocrystalline materials. When excited at 251 nm, a strong emissive line attributed to 5 D4 → 7 F5 electronic transition was observed at 545 nm (green emission). The maximum luminescence was found at the optimized concentration (0.05 mol) of Tb3+ ions; this emission was quenched by dipolar-dipolar (d-d) interactions. Chromaticity (x and y) and correlated colour temperature parameters were obtained by analysing the emission profiles. Finally, the colour coordinates of nanophosphors were closer to the National Television Standards Committee green coordinates, which replicates their potency in the design and architecture of R-G-B-based white LEDs.


Sujet(s)
Éclairage , Oxydes , Oxydes/composition chimique , Terbium/composition chimique , Luminescence , Diffraction des rayons X
3.
J Fluoresc ; 32(4): 1529-1541, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-35526208

RÉSUMÉ

Trivalent europium complexes exhibit good luminescent characteristics. A series of octacoordinated ternary europium complexes with fluorinated diketone and heteroaromatic auxiliary unit were synthesized. The synthesized europium complexes were characterized by elemental, thermal, electrochemical and spectroscopic analyses. Band gap values lie in range of semiconductors which confirm the conducting behavior of prepared complexes. Photoluminescence spectra were recorded in solid state and DMSO solvent. Emission spectral profiles have displayed most intense peak at ~ 612 nm corresponding to hypersensitive 5D0 → 7F2 transition. Colorimetric parameters suggest red luminous nature of europium complexes. The luminescent heteroleptic europium complexes might be utilized as emissive materials for fabricating display.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...