Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 142
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Food Res Int ; 195: 114989, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39277250

RÉSUMÉ

Alginate hydrogel is broadly known for its potential as an encapsulation agent due to its compatibility and versatility. Despite its predominance, alginate hydrogel naturally has macropores and a less rigid structure, which leads to syneresis and uncontrolled diffusion of bioactive compounds from the gel network. Combining alginate with other biopolymers has been considered to improve its properties as an encapsulation agent. This research aimed to evaluate the effect of Crystalline Nanocellulose (CNC) to the physical properties and the diffusion of gallic acid (GA), as a water-soluble polyphenol model, through the alginate-CNC composite hydrogels performed as an encapsulation agent. The hydrogel mixtures were made from 1:0, 1:1, 2:0, 2:1, 2:2, and 2:3 solid-basis ratio of sodium alginate:crystalline nanocellulose and evaluated for syneresis, gel strength and stiffness, rehydration properties and gel porosity. Alginate-CNC and GA interaction was observed through zeta-potential analysis and Fourier Transform Infrared (FTIR) spectroscopy. Results showed that composite hydrogel with the highest proportion of CNC increased the gel rehydration capacity (87.33 %), gel strength and stiffness as well as reduced the gel syneresis (14.72 %) and dried gel porosity (0.62). GA pre-loaded gel with 2:2 and 2:3 S-C ratios reduced the diffusion of gallic acid by 92.07-92.27 %. FTIR showed hydrogen bonding between GA and the alginate-CNC hydrogel. Alginate-CNC hydrogel had a fibrous and compact structure as shown in the cryo-SEM and confocal microscope images.


Sujet(s)
Alginates , Cellulose , Acide gallique , Hydrogels , Polyphénols , Alginates/composition chimique , Hydrogels/composition chimique , Cellulose/composition chimique , Polyphénols/composition chimique , Acide gallique/composition chimique , Spectroscopie infrarouge à transformée de Fourier , Porosité , Nanoparticules/composition chimique
2.
NPJ Sci Food ; 8(1): 54, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39169005

RÉSUMÉ

The emerging world of 3D food printing is reviewed. Its role in food manufacturing, including benefits and impacts, underemphasized gastrophysical aspects, and limitations are discussed. Foods can be digitally designed and physically prepared using the layer-by-layer deposition of food components, unleashing opportunities to deliver nutritionally personalized food and new food-human interactions. Existing bottlenecks, under-researched gastropsychophysical aspects, and the lack of harmonized standards hindering its use for mass production are mentioned.

3.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38955370

RÉSUMÉ

AIMS: This study aims to evaluate the storage stability of the freeze-dried recombinant Lactococcus lactis NZ3900-fermented milk powder expressing K-ras (Kristen rat sarcoma viral oncogene homolog) mimotopes targeting colorectal cancer in vacuum packaging. METHODS AND RESULTS: The freeze-dried L. lactis-fermented milk powder stored in 4-ply retortable polypropylene (RCPP)-polyamide (PA)-aluminium (AL)-polyethylene terephthalate (PET) and aluminium polyethylene (ALPE) was evaluated throughout 49 days of accelerated storage (38°C and 90% relative humidity). The fermented milk powder stored in 4-ply packaging remained above 6 log10 CFU g-1 viability, displayed lower moisture content (6.1%), higher flowability (43° angle of repose), water solubility (62%), and survivability of L. lactis after simulated gastric and intestinal digestion (>82%) than ALPE packaging after 42 days of accelerated storage. K-ras mimotope expression was detected intracellularly and extracellularly in the freeze-dried L. lactis-fermented milk powder upon storage. CONCLUSIONS: This suggests that fermented milk powder is a suitable food carrier for this live oral vaccine.


Sujet(s)
Emballage alimentaire , Lyophilisation , Lactococcus lactis , Lactococcus lactis/métabolisme , Lactococcus lactis/génétique , Emballage alimentaire/méthodes , Animaux , Vide , Poudres , Produits laitiers de culture/microbiologie , Fermentation , Lait/composition chimique , Gènes ras/génétique , Stockage des aliments
4.
Food Chem ; 451: 139478, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38692242

RÉSUMÉ

The market share of Sichuan pepper oleoresin (SPO) in the flavor industry is increasing steadily; however, its high volatility, low water solubility, and poor stability continue to pose significant challenges to application. The microencapsulation prepared by emulsion embedding and spray drying is considered as an effective technique to solve the above problems. Sodium octenyl succinate starch (OSA starch) and tea polyphenols (TPs) were used to develop OSA-TPs complex as encapsulants for SPO to prepare orally soluble microcapsules. And the optimum doping of TPs was determined. SPO microcapsules have good properties with high encapsulation efficiency up to 88.13 ± 1.48% and high payload up to 41.58 ± 1.86% with low water content and high heat resistance. The binding mechanism of OSA starch with TPs and its regulation mechanism and effect on SPOs were further analyzed and clarified. The binding mechanism between OSA starch and TPs was clarified in further analyses. The OSA-TPs complexes enhanced the rehydration, release in food matrix and storage stability of SPO, and exhibited good sensory immediacy. Flavor-improved mooncakes were successfully developed, achieving the combination of mooncake flavor and SPO flavor. This study provided a valuable way to prepare flavoring microcapsules suitable for the catering industry, opened up the combined application of SPO and bakery ingredients, and was of great practical value and significance for improving the processing quality of flavor foods, driving the development of the SPO industry, and enhancing the national dietary experience.


Sujet(s)
Préparation de médicament , Aromatisants , Extraits de plantes , Polyphénols , Amidon , Goût , Polyphénols/composition chimique , Amidon/composition chimique , Aromatisants/composition chimique , Extraits de plantes/composition chimique , Humains , Thé/composition chimique , Capsicum/composition chimique , Solubilité , Capsules/composition chimique , Camellia sinensis/composition chimique
5.
Food Chem ; 448: 139176, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38574719

RÉSUMÉ

Using 3D printing technology, a gelatin-polyvinyl alcohol­carbon dots (GPC) layer+corn starch-polyvinyl alcohol-cinnamon essential oil (CPC) layer active bilayer film with an external barrier function and an internal controlled-release effect was successfully produced for food preservation. The GPC film was provided with potent antioxidant and UV blocking properties by the banana peel carbon dots (CDs). The cinnamon essential oil (CEO) had the strongest interaction with the film matrix at 3% (w/w), causing the CPC film having the lowest surface wettability, good integrity, and lowest crystallinity. The CEO's stability and releasing effectiveness were greatly enhanced by the creation of a bilayer film. At 60% filling rate of the CPC layer, the bilayer film showed the highest CEO retention after drying and the best CEO release performance. Finally, the created active bilayer film was found to significantly improve the sensory quality stability of the spicy essential oil microcapsule powders. It also successfully extended the mangoes' shelf life by delaying browning and rot.


Sujet(s)
Cinnamomum zeylanicum , Emballage alimentaire , Gélatine , Musa , Huile essentielle , Impression tridimensionnelle , Amidon , Huile essentielle/composition chimique , Emballage alimentaire/instrumentation , Cinnamomum zeylanicum/composition chimique , Gélatine/composition chimique , Amidon/composition chimique , Musa/composition chimique , Carbone/composition chimique , Conservation aliments/instrumentation , Conservation aliments/méthodes , Boîtes quantiques/composition chimique , Zea mays/composition chimique
6.
J Sci Food Agric ; 104(3): 1470-1478, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37804504

RÉSUMÉ

BACKGROUND: A foam layer makes an essential contribution to the quality of cappuccino-style drinks. Poor foaming of milk occurs quite often, however, especially in summer. The reasons for this are still unknown. Although a substantial number of studies on the foaming process of milk have been reported, these studies have been laboratory based and have used laboratory or pilot-scale equipment to simulate the processing conditions of a dairy processing factory. This study collected about 40 different samples across different processing stages in a dairy factory over two seasons (two batches per season) and investigated their composition and physical and foaming properties by mechanical mixing and steam injection. RESULTS: The results showed that milk samples collected in summer had a significantly higher content of fat, free fatty acids, and Ca2+ ions, and larger particle sizes but a markedly lower concentration of protein and solid non-fat, and surface tension than the samples collected in spring. These differences provided spring milk with a higher steam injection foamability than summer milk. However, steam injection foam stability, and mechanical mixing foamability and foam stability were not affected by seasonal factors. Milk samples collected in different batches within a season were almost identical with regard to the properties that were investigated. CONCLUSION: The variations in composition and physical properties of milk collected between two seasons could be the reasons for their difference in foamability but not for foam stability. Processes such as standardization, homogenization, and pasteurization improved markedly the foaming properties of milk. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Sujet(s)
Lait , Vapeur , Animaux , Lait/composition chimique , Saisons , Pasteurisation
7.
Food Chem ; 427: 136639, 2023 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-37392624

RÉSUMÉ

Sichuan pepper oleoresin (SPO) is highly appreciated by the food industry as well as consumers for flavor. To understand the overall flavor of SPO and how the quality changes during practical application, this study investigated the effects of five cooking methods on the quality, sensory, and flavor compounds of SPO. The differences in physicochemical properties and sensory evaluation responded to potential changes in SPO after cooking. The SPO after different cooking could be clearly distinguished by E-nose and PCA. Based on the qualitative analysis of volatile compounds, 13 compounds were screened by OPLS-DA that had the ability to explain above differences. Further analysis of taste substances revealed that pungent substances (hydroxy-α-sanshool) were significantly reduced in SPO after cooking. And the conclusion that the degree of bitterness significantly increased was predicted by E-tongue. The PLS-R model was developed to achieve correlation analysis between aroma molecules and sensory quality.


Sujet(s)
Aliments , Piper nigrum , Goût , Perception du goût , Odorisants/analyse , Cuisine (activité)/méthodes
8.
J Food Sci ; 88(6): 2313-2324, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-37222558

RÉSUMÉ

To improve the stability and solubility of Cornus officinalis flavonoid (COF), spray drying (SD), freeze-drying (FD), and microwave freeze drying (MFD) were used to encapsulate COF using whey isolate protein (WPI) and gum arabic as wall materials. The characterization of COF microparticles was performed with encapsulation efficiency (EE), particle size, morphology, antioxidant activity, structure, thermal stability, color, stability during storage, and in vitro solubility. The results showed that COF was successfully encapsulated in the wall material with an EE between 78.86% and 91.11%. The freeze-dried microparticles had the highest EE (91.11%) and the lowest particle size (12.42 ± 16.73 µm). However, the particle size of COF microparticles of SD and MFD was relatively large. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity of the microparticles obtained from SD (89.36 mg Vc /g) was higher than that of MFD (85.67 mg Vc /g), but the drying time and energy consumption of microparticles dried by SD and MFD were lower than those of FD. Furthermore, the spray-dried COF microparticles had higher stability compared to FD and MFD when stored at 4°C for 30 days. In addition, the dissolution of COF microparticles prepared by SD and MFD was 55.64% and 57.35%, respectively, in simulated intestinal fluids, which was lower than that of FD (64.47%). Therefore, the application of microencapsulation technology showed significant advantages in improving the stability and solubility of COF, and the SD can be used for the preparation of microparticles considering energy cost and quality. PRACTICAL APPLICATION: COF is an important bioactive ingredient, but its poor stability and water solubility decreases its pharmacological value. COF microparticles can improve the stability of COF, enhance the slow-release effect, and expand its application in the food field. The drying method will affect the properties of COF microparticles. Thus, the structures and properties analysis of COF microparticles by different drying methods can provide a reference basis for the preparation and application of COF microparticles.


Sujet(s)
Cornus , Flavonoïdes , Préparations à action retardée , Antioxydants/composition chimique , Dessiccation , Lyophilisation/méthodes , Protéines de lactosérum
9.
Food Res Int ; 169: 112796, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37254381

RÉSUMÉ

A comprehensive study on the effect of mineral content on milk foaming properties was conducted. Samples with increased mineral concentration were prepared by adding four different types of minerals (KH2PO4, K3Cit, CaCl2 and MgCl2) at three different concentration levels (5, 10 and 20 mM) in both reconstituted skim milk powder and milk protein concentrate. Samples with reduced minerals were prepared by reconstituting milk protein concentrate in modified simulated milk ultrafiltrates. Different mineral types showed different effects on the physicochemical properties of milk samples. The addition of K3Cit increased the viscosity and decreased the surface tension while there were no significant differences between the samples added with KH2PO4, MgCl2, or CaCl2. In terms of foaming properties, the addition of CaCl2 or MgCl2 significantly increased the foam strength and stability while decreasing foamability. In contrast, the addition of K3Cit significantly decreased foam stability and foam strength while increasing foamability. It was also found that reduction in minerals in the range studied did not affect the foaming properties of milk. These results indicate that the effect of minerals on milk foaming properties depends on the type of mineral and the concentration. This provides an insight that while designing dairy-based food products, the mineral content can be manipulated to achieve the desired foaming properties.


Sujet(s)
Lait , Minéraux , Animaux , Chlorure de calcium , Lait/composition chimique , Protéines de lait/analyse , Minéraux/analyse
10.
Food Res Int ; 167: 112661, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-37087248

RÉSUMÉ

The primary additive manufacturing (AM) technique for all high-viscosity food composites is extrusion-based. Therefore, understanding the impact of process parameters involved is crucial in fulfilling the demand characteristics of the printed constructs. In this regard, a correlation between print accuracy and critical 3D printing (3DP) process variables as a strategy for expediting the selection of 3D printable food inks has the most potential for success. This paper studies the effectiveness of using heat-acid coagulated milk semisolids and polyol matrix as 3D printable food ink for high-quality prints. The study focused on the critical material properties and conducted rheological characterization and particle size distribution analysis. The study obtained the effective range of printing parameters for various process variables using a mathematical model that employed finite element analysis (FEA) to define the flow field characteristics. The dimensional accuracy of the printed constructs under different process variables was determined by utilizing image processing methods. A multi-objective optimization was carried out using the desirability function method to obtain the key correlations between the process parameters for the best-printed construct.


Sujet(s)
Température élevée , Lait , Animaux , Polymères , Impression tridimensionnelle
11.
J Sci Food Agric ; 103(11): 5312-5321, 2023 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-37016733

RÉSUMÉ

BACKGROUND: The attraction of cappuccino-style beverages is attributed to the foam layer, as it greatly improves the texture, appearance, and taste of these products. Typical milk has a low concentration of free fatty acids (FFAs), but their concentration can increase due to lipolysis during processing and storage, which is detrimental to the foamability and foam stability of milk. There are contradictory results in reported studies concerning the effects of FFAs on the foaming properties of milk due to differences in milk sources, methods inducing lipolysis, and methods of creating foam. In this study, the foaming properties and foam structure of milk samples whose lipolysis was induced by ultra-turraxing, homogenisation, and microfluidisation (1.5-3.5 µ-equiv. mL-1 FFAs) were investigated. RESULTS: Compared with others, microfluidised milk samples had the smallest particle size, lowest absolute zeta potential, and highest surface tension; thus exhibited high foamability and foam stability, and very small and homogeneous air bubbles in foam structure. For all shearing methods, increasing FFA content from 1.5 to 3.5 µ-equiv. mL-1 markedly decreased the surface tension, foamability, and foam stability of milk samples. The FFA level that led to undesirable foam structure was 1.5 µ-equiv. mL-1 for ultra-turraxed milk samples and 2.5 µ-equiv. mL-1 for homogenised and microfluidised ones. CONCLUSION: Shearing-induced lipolysis greatly affected the physical properties of milk samples and subsequently their foaming properties and foam structure. At the same FFA level, lipolysis induced by microfluidisation was much less detrimental to the foaming properties of milk than lipolysis induced by ultra-turraxing and homogenisation. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Sujet(s)
Lipolyse , Lait , Animaux , Lait/composition chimique , Acide gras libre/analyse , Taille de particule
12.
J Sci Food Agric ; 103(9): 4660-4667, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-36882894

RÉSUMÉ

BACKGROUND: Egg yolk powder (EYP) with high immunoglobulin of yolk (IgY) content and good solubility is in great demand in the market of functional foods. In this article, the properties of spray-dried EYP with the addition of five protectants (maltodextrin, trehalose, mannitol, maltitol and sucrose) were investigated. RESULTS: All the protectants increased IgY activity and solubility of EYP. Among them, EYP with maltodextrin displayed the highest activity of IgY (27.11 mg/g), the highest solubility (66.39%) and the lowest surface hydrophobicity. Moreover, the average particle size of EYP with maltodextrin was the smallest (9.78 µm). The egg yolk particles obtained by adding the protectants are more uniformly distributed and have smaller particle size. Fourier-transform infrared spectroscopy confirmed the structural integrity of the proteins, indicating that the protectants addition enhanced the hydrogen bonding forces between the EYP protein molecules. CONCLUSION: The addition of protectants can significantly improve the IgY content, solubility and structural stability of EYP. © 2023 Society of Chemical Industry.


Sujet(s)
Jaune d'œuf , Immunoglobulines , Animaux , Poudres , Immunoglobulines/composition chimique , Saccharose , Poulets
13.
Foods ; 12(6)2023 Mar 16.
Article de Anglais | MEDLINE | ID: mdl-36981189

RÉSUMÉ

Vegetables contain important bioactive substances which have unique tastes and aromas and provide beneficial effects to human health. In this study, multiflavor blended soy sauce was prepared with the juice of eight kinds of vegetables, dried shrimp boiled stock, and six kinds of commercial soy sauce as raw materials, and thermal ultrasound was used as the sterilization method. The effects of adding different formulas of vegetable and seafood stock on the basic physical and chemical parameters, nutrition, antioxidant activity, flavor, and taste of soy sauce were investigated. The results showed that the basic physicochemical indices such as pH, total acid, color, soluble solids, and amino acid nitrogen of the product with a ratio of soy sauce to vegetable-seafood stock of 1:0.5 (v/v) could meet the production standards of soy sauce, and its flavor, taste, and sensory scores were relatively good, with the highest likeability (overall acceptability). The mixed soy sauce with a ratio of 1:2 (v/v) had higher vegetable and seafood flavors, and different vegetable flavors (celery, carrot, and onion) were more obvious, but its nutritional index was relatively low. Multiflavor vegetable-soy sauce can be used for quick cooking by chefs of catering enterprises, and may be used as a seasoning bag for prefabricated dishes and convenient foods, attracting increasing attention from manufacturers and consumers.

14.
Crit Rev Food Sci Nutr ; : 1-14, 2023 Feb 19.
Article de Anglais | MEDLINE | ID: mdl-36803316

RÉSUMÉ

With higher standards in terms of diet and leisure enjoyment, spices and essential oils of aromatic plants (APEOs) are no longer confined to the food industry. The essential oils (EOs) produced from them are the active ingredients that contribute to different flavors. The multiple odor sensory properties and their taste characteristics of APEOs are responsible for their widespread use. The research on the flavor of APEOs is an evolving process attracting the attention among scientists in the past decades. For APEOs, which are used for a long time in the catering and leisure industries, it is necessary to analyze the components associated with the aromas and the tastes. It is important to identify the volatile components and assure quality of APEOs in order to expand their application. It is worth celebrating the different means by which the loss of flavor of APEOs can be retarded in practice. Unfortunately, relatively little research has been done on the structure and flavor mechanisms of APEOs. This also points the way to future research on APEOs.Therefore, this paper reviews the principles of flavor, identification of components and sensory pathways in humans for APEOs. Moreover, the article outlines the means of increasing the efficiency of using of APEOs. Finally, with respect to the sensory applications of APEOs, the review focuses on the practical application of APEOs in food sector and in aromatherapy.

15.
J Sci Food Agric ; 103(7): 3230-3248, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-36700618

RÉSUMÉ

Edible mushrooms are nutritious, tasty, and have medicinal value, which makes them very popular. Fresh mushrooms have a high water content and a crisp texture. They demonstrate strong metabolic activity after harvesting. However, they are prone to textural changes, microbial infestation, and nutritional and flavor loss, and they therefore require appropriate post-harvest processing and preservation. Important factors affecting safety and quality during their processing and storage include their quality, source, microbial contamination, physical damage, and chemical residues. Thus, these aspects should be tested carefully to ensure safety. In recent years, many new techniques have been used to preserve mushrooms, including electrofluidic drying and cold plasma treatment, as well as new packaging and coating technologies. In terms of detection, many new detection techniques, such as nuclear magnetic resonance (NMR), imaging technology, and spectroscopy can be used as rapid and effective means of detection. This paper reviews the new technological methods for processing and detecting the quality of mainstream edible mushrooms. It mainly introduces their working principles and application, and highlights the future direction of preservation, processing, and quality detection technologies for edible mushrooms. Adopting appropriate post-harvest processing and preservation techniques can maintain the organoleptic properties, nutrition, and flavor of mushrooms effectively. The use of rapid, accurate, and non-destructive testing methods can provide a strong assurance of food safety. At present, these new processing, preservation and testing methods have achieved good results but at the same time there are certain shortcomings. So it is recommended that they also be continuously researched and improved, for example through the use of new technologies and combinations of different technologies. © 2023 Society of Chemical Industry.


Sujet(s)
Agaricales , Conservation aliments/méthodes , Dessiccation , Technologie
16.
Int J Food Microbiol ; 384: 109963, 2023 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-36274385

RÉSUMÉ

A mixed solid matrix of the depolymerized pectin (DP) and rice protein (RP) were investigated to improve the antibacterial activity of star anise essential oil (SAEO) through microencapsulation. The encapsulation was undertaken via electrostatic complexation method followed by spray drying. Under the optimized conditions, SAEO microcapsules with 92.2 % encapsulation efficiency was acquired at 3:2 of DP-to-RP, 1:3 of DP-to-SAEO and pH 4.0. DP-RP/SAEO microcapsules exhibited a spherical-shaped particle with smaller particle size, and sustained release. FTIR and morphology analysis confirmed that SAEO was successfully encapsulated in the solid matrix of microcapsules. DP-RP/SAEO microcapsules caused the destruction of cytomembranes and reduction of membrane proteins, which led to the alteration of cell membrane fluidity and integrity. Meanwhile, DP-RP/SAEO microcapsules repressed the key enzyme in tricarboxylic acid (TCA) and Hexose monophosphate pathway (HMP) cycle pathway of E. coli, S. aureus. The application experiments indicated DP-RP/SAEO microcapsules can effectively control the growth of E. coli and S. aureus in crab meatballs.


Sujet(s)
Brachyura , Illicium , Huile essentielle , Oryza , Animaux , Capsules , Pectine/pharmacologie , Staphylococcus aureus , Électricité statique , Escherichia coli , Antibactériens/pharmacologie , Huile essentielle/pharmacologie
17.
Food Chem ; 404(Pt A): 134626, 2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36444045

RÉSUMÉ

The preparation of egg yolk powder (EYP) with excellent solubility and high retention of active IgY is of great significance for increasing the added value and promoting the application of EYP. A new method of preparing EYP by microwave-assisted freeze-drying (MFD) was researched. Confocal laser scanning microscopy results demonstrated that the supplementation of excipients (sucrose, trehalose, and maltodextrin) could inhibit lipoproteins aggregation in egg yolk induced by freezing. Scanning electron microscopy indicated that drying further damaged the structure of lipoproteins in EYP, leading to lipid separation from it. FTIR and fluorescence spectra confirmed this finding, indicating that excipients enhance protein stability. Compared with conventional freeze-drying (FD), EYP prepared by MFD, particularly that containing excipients, had higher solubility (63 g/100 g), active antibody retention rate and shorter drying time. Therefore, excipients can significantly improve the solubility and stability of EYP and the retention rate of active IgY.


Sujet(s)
Diholoside , Jaune d'œuf , Poudres , Micro-ondes , Excipients
18.
Front Nutr ; 9: 1007863, 2022.
Article de Anglais | MEDLINE | ID: mdl-36185648

RÉSUMÉ

The flavonoids in Cornus officinalis (CO) have various pharmacological activities, however, the flavonoid instability limits its application in food and pharmaceutical industries. In this study, Cornus officinalis flavonoid (COF) microcapsules were prepared by using a combination of whey isolate protein (WPI), soy isolate protein (SPI), gelatin (GE), and maltodextrin (MD) as wall materials, respectively. Meanwhile, the encapsulation efficiency, solubility, color, particle size, thermal stability and microstructure as well as the antioxidant capacity of microcapsules were assessed. When the protein/MD ratio was 3:7, three kinds of combined wall materials realized high encapsulation efficiency (96.32-98.24%) and water solubility index (89.20-90.10%). Compared with other wall material combinations, the microcapsules with WPI-MD wall ratio at 3:7 had lower particle size (7.17 µm), lower moisture content (6.13%), higher encapsulation efficiency (98.24%), better water solubility index (90.1%), higher thermal stability (86.00°C), brightness L* (67.84) and higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging capacity (6.98 mgVc/g), and better flowability. Results suggested that WPI and MD could be better wall materials applied in encapsulating COF.

19.
Crit Rev Food Sci Nutr ; : 1-22, 2022 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-35766478

RÉSUMÉ

With the increase of people's awareness of food safety, it is crucial to find natural and green antimicrobial agents to replace traditional antimicrobial agents. Essential oils of spices (SEOs) are low toxicity or nontoxic, which exhibited antioxidants and antimicrobial activity according to many in vitro and in situ experiments. Spices are widely available and low cost as a plant raw material for the extraction of SEOs. This review summarized highly efficient extraction techniques for SEOs, such as physical field assisted extraction technology, supercritical fluid extraction, and biological-based techniques. Furthermore, purification of SEOs and components were also recapitulated. Purification techniques of SEOs improve their utilization value due to the increased content of bioactive components. Finally, the review concentrated on the applications of SEOs in food industry, including food preservation, food active packaging by means of films or coatings, antioxidant properties. In addition, addressing the problem of unstability of SEOs and its role to inhibit the pathogenic bacteria, the encapsulation of SEOs for use in the food industrial sectors reduces the safety risk to human health.

20.
Food Res Int ; 157: 111214, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35761535

RÉSUMÉ

Conventional 3D printing exhibits serious limitation for it requires a support layer upon which more layers can be formed. A designed structure that lacks such a layer is therefore very difficult, if not impossible, to be printed. A novel means to allow 4D deformation of simple 3D-printed object into complex suspended structure is therefore proposed; microwave irradiation was used to induce the desired directed deformation. In this study, yellow flesh peach-buckwheat paste was used to study the effects of model structure and microwave power on directed 4D deformation behavior. Then, finite-element based simulation was conducted to investigate interactions between the printed object and microwave irradiation. Experiments and simulations showed that local high temperature generated by microwave (200 W) caused directional micro puffing at resulting hot spots, forming a driving force to allow 3D-printed objects to rapidly undergo 4D deformation (within 90 s). The verification test also proved that puffing was the main factor driving 4D deformation. This strategy could combine with color and flavor changing microcapsules to realize the synchronous 4D printing process of deformation, color changing, and aroma changing within 15 s, induced by a household microwave oven (700 W). The purpose of this study is to provide a new 4D printing method interacting with consumers in a short time, which could be applied to children's food.


Sujet(s)
Couleur , Micro-ondes , Odorisants , Amidon , Fruit , Odorisants/analyse , Amidon/analyse , Légumes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE