Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Biol Cell ; : mbcE24040166, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38985518

RÉSUMÉ

Aneuploidy is nearly ubiquitous in tumor genomes, but the role of aneuploidy in the early stages of cancer evolution remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigated how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Previous work implicated p53 activation as a downstream response to aneuploidy induction. We found that simple aneuploidy, characterized by 1-3 gained or lost chromosomes, resulted in little or modest p53 activation and cell cycle arrest when compared with more complex aneuploid cells. Single-cell RNA sequencing analysis revealed that the degree of p53 activation was strongly correlated with karyotype complexity. Single-cell tracking showed that cells could continue to divide despite the observation of one to a few lagging chromosomes. Unexpectedly, colonoids with simple aneuploidy exhibited impaired differentiation after niche factor withdrawal. These findings demonstrate that simple aneuploid cells can escape p53 surveillance and may contribute to niche factor-independent growth of cancer-initiating colon stem cells. [Media: see text].

2.
Sci Adv ; 10(14): eadj7666, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38569041

RÉSUMÉ

Inflammation-associated fibroblasts (IAFs) are associated with progression and drug resistance of chronic inflammatory diseases such as inflammatory bowel disease (IBD), but their direct impact on epithelial cells is unknown. Here, we developed an in vitro model whereby human colon fibroblasts are induced by specific cytokines and recapitulate key features of IAFs in vivo. When cocultured with patient-derived colon organoids (colonoids), IAFs induced rapid colonoid expansion and barrier disruption due to swelling and rupture of individual epithelial cells. Colonoids cocultured with IAFs also show increased DNA damage, mitotic errors, and proliferation arrest. These IAF-induced epithelial defects are mediated by a paracrine pathway involving prostaglandin E2 and its receptor EP4, leading to protein kinase A -dependent activation of the cystic fibrosis transmembrane conductance regulator. EP4-specific chemical inhibitors effectively prevented IAF-induced colonoid swelling and restored normal proliferation and genome stability. These findings reveal a mechanism by which IAFs could promote and perpetuate IBD and suggest a therapeutic avenue to mitigate inflammation-associated epithelial injury.


Sujet(s)
Maladies inflammatoires intestinales , Prostaglandines , Humains , Épithélium/métabolisme , Inflammation , Maladies inflammatoires intestinales/étiologie , Maladies inflammatoires intestinales/métabolisme , Fibroblastes/métabolisme
3.
bioRxiv ; 2023 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-37790420

RÉSUMÉ

Aneuploidy, a near ubiquitous genetic feature of tumors, is a context-dependent driver of cancer evolution; however, the mechanistic basis of this role remains unclear. Here, by inducing heterogeneous aneuploidy in non-transformed human colon organoids (colonoids), we investigate how the effects of aneuploidy on cell growth and differentiation may promote malignant transformation. Single-cell RNA sequencing reveals that the gene expression signature across over 100 unique aneuploid karyotypes is enriched with p53 responsive genes. The primary driver of p53 activation is karyotype complexity. Complex aneuploid cells with multiple unbalanced chromosomes activate p53 and undergo G1 cell-cycle arrest, independent of DNA damage and without evidence of senescence. By contrast, simple aneuploid cells with 1-3 chromosomes gained or lost continue to proliferate, demonstrated by single cell tracking in colonoids. Notably, simple aneuploid cells exhibit impaired differentiation when niche factors are withdrawn. These findings suggest that while complex aneuploid cells are eliminated from the normal epithelium due to p53 activation, simple aneuploid cells can escape this checkpoint and may contribute to niche factor-independent growth of cancer-initiating cells.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...