Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Proc Biol Sci ; 288(1961): 20211769, 2021 10 27.
Article de Anglais | MEDLINE | ID: mdl-34666518

RÉSUMÉ

We consider the opportunities and challenges associated with organizing a conference online, using a case study of a medium-sized (approx. 400 participants) international conference held virtually in August 2020. In addition, we present quantifiable evidence of the participants' experience using the results from an online post-conference questionnaire. Although the virtual meeting was not able to replicate the in-person experience in some aspects (e.g. less engagement between participants) the overwhelming majority of respondents found the meeting an enjoyable experience and would join similar events again. Notably, there was a strong desire for future in-person meetings to have at least some online component. Online attendance by lower-income researchers was higher compared with a past, similar-themed in-person meeting held in a high-income nation, but comparable to one held in an upper-middle-income nation. This indicates that online conferences are not a panacea for diversity and inclusivity, and that holding in-person meetings in developing economies can be at least as effective. Given that it is now relatively easy to stream contents of meetings online using low-cost methods, there are clear benefits in making all presented content accessible online, as well as organizing online networking events for those unable to attend in person.


Sujet(s)
COVID-19 , Humains
3.
BMC Genomics ; 20(1): 691, 2019 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-31477008

RÉSUMÉ

BACKGROUND: Mitochondria perform many key roles in their eukaryotic hosts, from integrating signaling pathways through to modulating whole organism phenotypes. The > 1 billion years of nuclear and mitochondrial gene co-evolution has necessitated coordinated expression of gene products from both genomes that maintain mitochondrial, and more generally, eukaryotic cellular function. How mitochondrial DNA (mtDNA) variation modifies host fitness has proved a challenging question but has profound implications for evolutionary and medical genetics. In Drosophila, we have previously shown that recently diverged mtDNA haplotypes within-species can have more impact on organismal phenotypes than older, deeply diverged haplotypes from different species. Here, we tested the effects of mtDNA haplotype variation on gene expression in Drosophila under standardized conditions. Using the Drosophila Genetic Reference Panel (DGRP), we constructed a panel of mitonuclear genotypes that consists of factorial variation in nuclear and mtDNA genomes, with mtDNAs originating in D. melanogaster (2x haplotypes) and D. simulans (2x haplotypes). RESULTS: We show that mtDNA haplotype variation unequivocally alters nuclear gene expression in both females and males, and mitonuclear interactions are pervasive modifying factors for gene expression. There was appreciable overlap between the sexes for mtDNA-sensitive genes, and considerable transcriptional variation attributed to particular mtDNA contrasts. These genes are generally found in low-connectivity gene co-expression networks, occur in gene clusters along chromosomes, are often flanked by non-coding RNA, and are under-represented among housekeeping genes. Finally, we identify the giant (gt) transcription factor motif as a putative regulatory sequence associated with mtDNA-sensitive genes. CONCLUSIONS: There are predictive conditions for nuclear genes that are influenced by mtDNA variation.


Sujet(s)
Noyau de la cellule/génétique , Drosophila/génétique , Réseaux de régulation génique/génétique , Génome mitochondrial/génétique , Motifs d'acides aminés/génétique , Animaux , Noyau de la cellule/métabolisme , Drosophila/croissance et développement , Femelle , Régulation de l'expression des gènes , Réseaux de régulation génique/physiologie , Gènes essentiels/génétique , Gènes essentiels/physiologie , Variation génétique , Génotype , Haplotypes , Mâle , Famille multigénique , Phénotype , Cartes d'interactions protéiques/génétique , Cartes d'interactions protéiques/physiologie , ARN non traduit/génétique , ARN non traduit/métabolisme , RNA-Seq , Transcriptome
4.
IUBMB Life ; 70(12): 1275-1288, 2018 12.
Article de Anglais | MEDLINE | ID: mdl-30394643

RÉSUMÉ

Mitochondrial function requires the coordinated expression of dozens of gene products from the mitochondrial genome and hundreds from the nuclear genomes. The systems that emerge from these interactions convert the food we eat and the oxygen we breathe into energy for life, while regulating a wide range of other cellular processes. These facts beg the question of whether the gene-by-gene interactions (G x G) that enable mitochondrial function are distinct from the gene-by-environment interactions (G x E) that fuel mitochondrial activity. We examine this question using a Drosophila model of mitonuclear interactions in which experimental combinations of mtDNA and nuclear chromosomes generate pairs of mitonuclear genotypes to test for epistatic interactions (G x G). These mitonuclear genotypes are then exposed to altered dietary or oxygen environments to test for G x E interactions. We use development time to assess dietary effects, and genome wide RNAseq analyses to assess hypoxic effects on transcription, which can be partitioned in to mito, nuclear, and environmental (G x G x E) contributions to these complex traits. We find that mitonuclear epistasis is universal, and that dietary and hypoxic treatments alter the epistatic interactions. We further show that the transcriptional response to alternative mitonuclear interactions has significant overlap with the transcriptional response to alternative oxygen environments. Gene coexpression analyses suggest that these shared genes are more central in networks of gene interactions, implying some functional overlap between epistasis and genotype by environment interactions. These results are discussed in the context of evolutionary fitness, the genetic basis of complex traits, and the challenge of achieving precision in personalized medicine. © 2018 The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1275-1288, 2018.


Sujet(s)
Épistasie/génétique , Interaction entre gènes et environnement , Mitochondries/génétique , Hérédité multifactorielle/génétique , Animaux , Noyau de la cellule/génétique , Drosophila melanogaster/génétique , Génome mitochondrial/génétique , Génomique , Génotype , Haplotypes , Humains , Phénotype , Médecine de précision
5.
R Soc Open Sci ; 5(5): 171532, 2018 May.
Article de Anglais | MEDLINE | ID: mdl-29892357

RÉSUMÉ

Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last decade.

6.
Genetics ; 203(1): 463-84, 2016 05.
Article de Anglais | MEDLINE | ID: mdl-26966258

RÉSUMÉ

Mitochondrial (mtDNA) and nuclear genes have to operate in a coordinated manner to maintain organismal function, and the regulation of this homeostasis presents a substantial source of potential epistatic (G × G) interactions. How these interactions shape the fitness landscape is poorly understood. Here we developed a novel mitonuclear epistasis model, using selected strains of the Drosophila Genetic Reference Panel (DGRP) and mitochondrial genomes from within Drosophila melanogaster and D. simulans to test the hypothesis that mtDNA × nDNA interactions influence fitness. In total we built 72 genotypes (12 nuclear backgrounds × 6 mtDNA haplotypes, with 3 from each species) to dissect the relationship between genotype and phenotype. Each genotype was assayed on four food environments. We found considerable variation in several phenotypes, including development time and egg-to-adult viability, and this variation was partitioned into genetic (G), environmental (E), and higher-order (G × G, G × E, and G × G × E) components. Food type had a significant impact on development time and also modified mitonuclear epistases, evidencing a broad spectrum of G × G × E across these genotypes. Nuclear background effects were substantial, followed by mtDNA effects and their G × G interaction. The species of mtDNA haplotype had negligible effects on phenotypic variation and there was no evidence that mtDNA variation has different effects on male and female fitness traits. Our results demonstrate that mitonuclear epistases are context dependent, suggesting the selective pressure acting on mitonuclear genotypes may vary with food environment in a genotype-specific manner.


Sujet(s)
Régime alimentaire , Drosophila melanogaster/génétique , Épistasie , Génome mitochondrial , Animaux , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/métabolisme , Femelle , Interaction entre gènes et environnement , Aptitude génétique , Mâle , Modèles génétiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...