Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Clin Hemorheol Microcirc ; 87(3): 301-313, 2024.
Article de Anglais | MEDLINE | ID: mdl-38701138

RÉSUMÉ

BACKGROUND: Subarachnoid hemorrhage (SAH) represents a severe injury to the brain and is associated with a high mortality (40%). Several experimental SAH models are described in the literature requiring specialized equipment and a high degree of surgical expertise. Our goal was to validate a simplified, cost-effective model to permit future studies of SAH. METHODS: SAH was induced by injection of homologous blood into the cisterna magna. Perfusion-fixation then perfusion of gelatinous India ink was performed. Brains and brainstems were collected and imaged for analysis of cerebral vasospasm. Triphenyl tetrazolium chloride (TTC) staining was used to analyze brain tissue cell death 24 hours following stroke. A composite neuroscore was utilized to assess SAH-related neurologic deficits. RESULTS: Anterior cerebral artery and basilary artery diameters were significantly reduced at 24 hours post SAH induction. Middle cerebral artery diameter was also reduced; however, the results were not significant. TTC staining showed no infarcted tissue. Neuroscores were significantly lower in the SAH mice, indicating the presence of functional deficits. CONCLUSIONS: This simplified model of SAH elicits pathological changes consistent with those described for more complex models in the literature. Therefore, it can be used in future preclinical studies examining the pathophysiology of SAH and novel treatment options.


Sujet(s)
Modèles animaux de maladie humaine , Hémorragie meningée , Animaux , Hémorragie meningée/anatomopathologie , Souris , Vasospasme intracrânien/étiologie , Vasospasme intracrânien/anatomopathologie , Mâle , Souris de lignée C57BL
2.
Curr Issues Mol Biol ; 46(4): 3122-3133, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38666926

RÉSUMÉ

Worldwide, approximately 15 million people per year suffer from stroke. With about 5 million deaths, stroke is the second most common cause of death and a major cause of long-term disability. It is estimated that about 25% of people older than 85 years will develop stroke. Cannabis sativa and derived cannabinoids have been used for recreational and medical purposes for many centuries. However, due to the legal status in the past, research faced restrictions, and cannabis use was stigmatized for potential negative impacts on health. With the changes in legal status in many countries of the world, cannabis and cannabis-derived substances such as cannabinoids and terpenes have gained more interest in medical research. Several medical effects of cannabis have been scientifically proven, and potential risks identified. In the context of stroke, the role of cannabis is controversial. The negative impact of cannabis use on stroke has been reported through case reports and population-based studies. However, potential beneficial effects of specific cannabinoids are described in animal studies under certain conditions. In this narrative review, the existing body of evidence regarding the negative and positive impacts of cannabis use prior to stroke will be critically appraised.

3.
Int J Mol Sci ; 24(23)2023 Nov 24.
Article de Anglais | MEDLINE | ID: mdl-38069049

RÉSUMÉ

The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.


Sujet(s)
Endocannabinoïdes , Accident vasculaire cérébral , Humains , Maladies neuro-inflammatoires , Neuroprotection , Récepteur cannabinoïde de type CB1 , Récepteur cannabinoïde de type CB2 , Récepteurs de cannabinoïdes
4.
Clin Hemorheol Microcirc ; 79(1): 137-147, 2021.
Article de Anglais | MEDLINE | ID: mdl-34487026

RÉSUMÉ

BACKGROUND: Stroke, traumatic brain injury, or other forms of central nervous system (CNS) injury initiate a local inflammatory response. Compensatory anti-inflammatory pathways are activated to limit secondary damage due to inflammation. The associated release of immunosuppressing neuromodulators can result in system-wide immune dysregulation (CNS injury-induced immune-depression syndrome -CIDS). OBJECTIVE: To establish an experimental stroke model where CIDS can be studied by intravital microscopy (IVM). METHODS: We used the photothrombotic stroke (PTS) model in C57BL/6 mice and studied its effects on peripheral immunity following challenge with lipopolysaccharide (LPS). Leukocyte activation, as well as capillary perfusion of the microcirculation, were assessed using intestinal intravital microscopy (IVM). RESULTS: PTS caused a significant reduction in the number of adhering leukocytes in submucosal venules of the terminal ileum of mice challenged with LPS compared to LPS-challenged animals without stroke. Leukocyte rolling was also impacted by PTS in the submucosal venules. Following stroke, we also observed decreased mucosal functional capillary density (FCD). CONCLUSIONS: Our results suggest that PTS with subsequent LPS challenge poses as a viable model to further study CIDS using intravital microscopy of the intestinal microcirculation.


Sujet(s)
Endotoxémie , Animaux , Adhérence cellulaire , Modèles animaux de maladie humaine , Microscopie intravitale , Leucocytes , Souris , Souris de lignée C57BL , Microcirculation , Rats , Rats de lignée LEW
5.
Life (Basel) ; 11(6)2021 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-34207063

RÉSUMÉ

Patients suffering from stroke, traumatic brain injury, or other forms of central nervous system (CNS) injury have an increased risk of nosocomial infections due to CNS injury-induced immunosuppression (CIDS). Immediately after CNS-injury, the response in the brain is pro-inflammatory; however, subsequently, local and systemic immunity is suppressed due to the compensatory release of immunomodulatory neurotransmitters. CIDS makes patients susceptible to contracting infections, among which pneumonia is very common and often lethal. Ventilator-acquired pneumonia has a mortality of 20-50% and poses a significant risk to vulnerable patients such as stroke survivors. The mechanisms involved in CIDS are not well understood. In this review, we consolidate the evidence for cellular processes underlying the pathogenesis of CIDS, the emerging treatments, and speculate further on the immune elements at play.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE