Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 34
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mol Cell ; 84(4): 640-658.e10, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38266639

RÉSUMÉ

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1, and RMI2 to form the BTR complex, which dissolves double Holliday junctions and DNA replication intermediates to promote sister chromatid disjunction before cell division. In its absence, structure-specific nucleases like the SMX complex (comprising SLX1-SLX4, MUS81-EME1, and XPF-ERCC1) can cleave joint DNA molecules instead, but cells deficient in both BTR and SMX are not viable. Here, we identify a negative genetic interaction between BLM loss and deficiency in the BRCA1-BARD1 tumor suppressor complex. We show that this is due to a previously overlooked role for BARD1 in recruiting SLX4 to resolve DNA intermediates left unprocessed by BLM in the preceding interphase. Consequently, cells with defective BLM and BRCA1-BARD1 accumulate catastrophic levels of chromosome breakage and micronucleation, leading to cell death. Thus, we reveal mechanistic insights into SLX4 recruitment to DNA lesions, with potential clinical implications for treating BRCA1-deficient tumors.


Sujet(s)
Protéines de liaison à l'ADN , Recombinases , Humains , ADN/génétique , Réparation de l'ADN , Réplication de l'ADN , ADN cruciforme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Recombinases/génétique , RecQ helicases/génétique , RecQ helicases/métabolisme
2.
Nat Rev Cancer ; 23(2): 78-94, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36471053

RÉSUMÉ

Cells have evolved a complex network of biochemical pathways, collectively known as the DNA damage response (DDR), to prevent detrimental mutations from being passed on to their progeny. The DDR coordinates DNA repair with cell-cycle checkpoint activation and other global cellular responses. Genes encoding DDR factors are frequently mutated in cancer, causing genomic instability, an intrinsic feature of many tumours that underlies their ability to grow, metastasize and respond to treatments that inflict DNA damage (such as radiotherapy). One instance where we have greater insight into how genetic DDR abrogation impacts on therapy responses is in tumours with mutated BRCA1 or BRCA2. Due to compromised homologous recombination DNA repair, these tumours rely on alternative repair mechanisms and are susceptible to chemical inhibitors of poly(ADP-ribose) polymerase (PARP), which specifically kill homologous recombination-deficient cancer cells, and have become a paradigm for targeted cancer therapy. It is now clear that many other synthetic-lethal relationships exist between DDR genes. Crucially, some of these interactions could be exploited in the clinic to target tumours that become resistant to PARP inhibition. In this Review, we discuss state-of-the-art strategies for DDR inactivation using small-molecule inhibitors and highlight those compounds currently being evaluated in the clinic.


Sujet(s)
Tumeurs , Inhibiteurs de poly(ADP-ribose) polymérases , Humains , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Inhibiteurs de poly(ADP-ribose) polymérases/usage thérapeutique , Tumeurs/traitement médicamenteux , Tumeurs/génétique , Réparation de l'ADN , Altération de l'ADN , Mutation , Poly(ADP-ribose) polymerases/génétique , Poly(ADP-ribose) polymerases/métabolisme , Poly(ADP-ribose) polymerases/usage thérapeutique
3.
Mol Cell ; 82(18): 3382-3397.e7, 2022 09 15.
Article de Anglais | MEDLINE | ID: mdl-36002001

RÉSUMÉ

Aberrant replication causes cells lacking BRCA2 to enter mitosis with under-replicated DNA, which activates a repair mechanism known as mitotic DNA synthesis (MiDAS). Here, we identify genome-wide the sites where MiDAS reactions occur when BRCA2 is abrogated. High-resolution profiling revealed that these sites are different from MiDAS at aphidicolin-induced common fragile sites in that they map to genomic regions replicating in the early S-phase, which are close to early-firing replication origins, are highly transcribed, and display R-loop-forming potential. Both transcription inhibition in early S-phase and RNaseH1 overexpression reduced MiDAS in BRCA2-deficient cells, indicating that transcription-replication conflicts (TRCs) and R-loops are the source of MiDAS. Importantly, the MiDAS sites identified in BRCA2-deficient cells also represent hotspots for genomic rearrangements in BRCA2-mutated breast tumors. Thus, our work provides a mechanism for how tumor-predisposing BRCA2 inactivation links transcription-induced DNA damage with mitotic DNA repair to fuel the genomic instability characteristic of cancer cells.


Sujet(s)
Réplication de l'ADN , Mitose , Aphidicoline/pharmacologie , Protéine BRCA2/génétique , Sites fragiles de chromosome/génétique , ADN/génétique , Altération de l'ADN , Instabilité du génome , Humains , Mitose/génétique
4.
Nat Commun ; 13(1): 4143, 2022 07 16.
Article de Anglais | MEDLINE | ID: mdl-35842428

RÉSUMÉ

The accurate repair of DNA double-strand breaks (DSBs), highly toxic DNA lesions, is crucial for genome integrity and is tightly regulated during the cell cycle. In mitosis, cells inactivate DSB repair in favor of a tethering mechanism that stabilizes broken chromosomes until they are repaired in the subsequent cell cycle phases. How this is achieved mechanistically is not yet understood, but the adaptor protein TOPBP1 is critically implicated in this process. Here, we identify CIP2A as a TOPBP1-interacting protein that regulates TOPBP1 localization specifically in mitosis. Cells lacking CIP2A display increased radio-sensitivity, micronuclei formation and chromosomal instability. CIP2A is actively exported from the cell nucleus in interphase but, upon nuclear envelope breakdown at the onset of mitosis, gains access to chromatin where it forms a complex with MDC1 and TOPBP1 to promote TOPBP1 recruitment to sites of mitotic DSBs. Collectively, our data uncover CIP2A-TOPBP1 as a mitosis-specific genome maintenance complex.


Sujet(s)
Autoantigènes , Protéines de transport , Réparation de l'ADN , Protéines de liaison à l'ADN , Protéines et peptides de signalisation intracellulaire , Protéines membranaires , Protéines nucléaires , Autoantigènes/génétique , Autoantigènes/métabolisme , Protéines de transport/génétique , Protéines de transport/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Instabilité des chromosomes , ADN , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Humains , Protéines et peptides de signalisation intracellulaire/génétique , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Mitose/physiologie , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme
5.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article de Anglais | MEDLINE | ID: mdl-35115399

RÉSUMÉ

The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.


Sujet(s)
Syndrome de Bloom/génétique , ADN cruciforme/génétique , Instabilité du génome/génétique , Allèles , Protéines de transport/génétique , Lignée cellulaire , ADN topoisomérases de type I/génétique , Humains , Mutation/génétique , Liaison aux protéines/génétique , RecQ helicases/génétique , Recombinaison génétique/génétique , Solubilité
6.
Nat Commun ; 12(1): 585, 2021 01 26.
Article de Anglais | MEDLINE | ID: mdl-33500419

RÉSUMÉ

The Bloom syndrome helicase BLM interacts with topoisomerase IIIα (TOP3A), RMI1 and RMI2 to form the BTR complex, which dissolves double Holliday junctions to produce non-crossover homologous recombination (HR) products. BLM also promotes DNA-end resection, restart of stalled replication forks, and processing of ultra-fine DNA bridges in mitosis. How these activities of the BTR complex are regulated in cells is still unclear. Here, we identify multiple conserved motifs within the BTR complex that interact cooperatively with the single-stranded DNA (ssDNA)-binding protein RPA. Furthermore, we demonstrate that RPA-binding is required for stable BLM recruitment to sites of DNA replication stress and for fork restart, but not for its roles in HR or mitosis. Our findings suggest a model in which the BTR complex contains the intrinsic ability to sense levels of RPA-ssDNA at replication forks, which controls BLM recruitment and activation in response to replication stress.


Sujet(s)
Syndrome de Bloom/génétique , Réplication de l'ADN , ADN simple brin/métabolisme , RecQ helicases/métabolisme , Protéine A de réplication/métabolisme , Motifs d'acides aminés/génétique , Systèmes CRISPR-Cas/génétique , Altération de l'ADN , ADN topoisomérases de type I/métabolisme , ADN simple brin/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Techniques de knock-down de gènes , Cellules HeLa , Humains , Mitose/génétique , Mutation , Liaison aux protéines/génétique , Domaines protéiques/génétique , RecQ helicases/génétique , Protéines recombinantes/génétique , Protéines recombinantes/métabolisme , Réparation de l'ADN par recombinaison/génétique
8.
Structure ; 28(6): 674-689.e11, 2020 06 02.
Article de Anglais | MEDLINE | ID: mdl-32375023

RÉSUMÉ

Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.


Sujet(s)
Protéines du cycle cellulaire/composition chimique , Protéines du cycle cellulaire/métabolisme , Chlamydomonas/physiologie , Cils vibratiles/métabolisme , Protéines associées aux microtubules/composition chimique , Protéines associées aux microtubules/métabolisme , Protéines d'algue/composition chimique , Protéines d'algue/métabolisme , Lignée cellulaire , Chlamydomonas/classification , Cristallographie aux rayons X , Cellules HEK293 , Humains , Microtubules/métabolisme , Modèles moléculaires , Phylogenèse , Conformation des protéines , Domaines protéiques , Multimérisation de protéines
9.
Trends Biochem Sci ; 45(4): 321-331, 2020 04.
Article de Anglais | MEDLINE | ID: mdl-32001093

RÉSUMÉ

DNA double-strand breaks (DSBs) are highly toxic lesions that can lead to chromosomal instability if they are not repaired correctly. DSBs are especially dangerous in mitosis when cells go through the complex process of equal chromosome segregation into daughter cells. When cells encounter DSBs in interphase, they are able to arrest the cell cycle until the breaks are repaired before entering mitosis. However, when DSBs occur during mitosis, cells no longer arrest but prioritize completion of cell division over repair of DNA damage. This review focuses on recent progress in our understanding of the mechanisms that allow mitotic cells to postpone DSB repair without accumulating massive chromosomal instability. Additionally, we review possible physiological consequences of failed DSB responses in mitosis.


Sujet(s)
Cellules/métabolisme , Mitose , Cassures double-brin de l'ADN , Altération de l'ADN , Humains
10.
Nat Commun ; 11(1): 123, 2020 01 08.
Article de Anglais | MEDLINE | ID: mdl-31913317

RÉSUMÉ

Induction of DNA double-strand breaks (DSBs) in ribosomal DNA (rDNA) repeats is associated with ATM-dependent repression of ribosomal RNA synthesis and large-scale reorganization of nucleolar architecture, but the signaling events that regulate these responses are largely elusive. Here we show that the nucleolar response to rDNA breaks is dependent on both ATM and ATR activity. We further demonstrate that ATM- and NBS1-dependent recruitment of TOPBP1 in the nucleoli is required for inhibition of ribosomal RNA synthesis and nucleolar segregation in response to rDNA breaks. Mechanistically, TOPBP1 recruitment is mediated by phosphorylation-dependent interactions between three of its BRCT domains and conserved phosphorylated Ser/Thr residues at the C-terminus of the nucleolar phosphoprotein Treacle. Our data thus reveal an important cooperation between TOPBP1 and Treacle in the signaling cascade that triggers transcriptional inhibition and nucleolar segregation in response to rDNA breaks.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines de transport/métabolisme , Nucléole/génétique , ADN ribosomique/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines nucléaires/métabolisme , Phosphoprotéines/métabolisme , Motifs d'acides aminés , Protéines mutées dans l'ataxie-télangiectasie/génétique , Protéines de transport/génétique , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Nucléole/métabolisme , Cassures double-brin de l'ADN , ADN ribosomique/métabolisme , Protéines de liaison à l'ADN/génétique , Humains , Protéines nucléaires/composition chimique , Protéines nucléaires/génétique , Phosphoprotéines/composition chimique , Phosphoprotéines/génétique , Liaison aux protéines , ARN ribosomique/génétique , ARN ribosomique/métabolisme
11.
Mol Cell ; 74(3): 571-583.e8, 2019 05 02.
Article de Anglais | MEDLINE | ID: mdl-30898438

RÉSUMÉ

In mitosis, cells inactivate DNA double-strand break (DSB) repair pathways to preserve genome stability. However, some early signaling events still occur, such as recruitment of the scaffold protein MDC1 to phosphorylated histone H2AX at DSBs. Yet, it remains unclear whether these events are important for maintaining genome stability during mitosis. Here, we identify a highly conserved protein-interaction surface in MDC1 that is phosphorylated by CK2 and recognized by the DNA-damage response mediator protein TOPBP1. Disruption of MDC1-TOPBP1 binding causes a specific loss of TOPBP1 recruitment to DSBs in mitotic but not interphase cells, accompanied by mitotic radiosensitivity, increased micronuclei, and chromosomal instability. Mechanistically, we find that TOPBP1 forms filamentous structures capable of bridging MDC1 foci in mitosis, indicating that MDC1-TOPBP1 complexes tether DSBs until repair is reactivated in the following G1 phase. Thus, we reveal an important, hitherto-unnoticed cooperation between MDC1 and TOPBP1 in maintaining genome stability during cell division.


Sujet(s)
Protéines de transport/génétique , Instabilité des chromosomes/génétique , Protéines de liaison à l'ADN/génétique , Mitose/génétique , Protéines nucléaires/génétique , Transactivateurs/génétique , Protéines adaptatrices de la transduction du signal , Protéines du cycle cellulaire , Cassures double-brin de l'ADN , Altération de l'ADN/génétique , Réparation de l'ADN/génétique , Phase G1/génétique , Génome humain/génétique , Instabilité du génome/génétique , Histone , Humains , Phosphorylation , Transduction du signal/génétique
12.
Nat Commun ; 9(1): 5406, 2018 12 17.
Article de Anglais | MEDLINE | ID: mdl-30559443

RÉSUMÉ

53BP1 controls a specialized non-homologous end joining (NHEJ) pathway that is essential for adaptive immunity, yet oncogenic in BRCA1 mutant cancers. Intra-chromosomal DNA double-strand break (DSB) joining events during immunoglobulin class switch recombination (CSR) require 53BP1. However, in BRCA1 mutant cells, 53BP1 blocks homologous recombination (HR) and promotes toxic NHEJ, resulting in genomic instability. Here, we identify the protein dimerization hub-DYNLL1-as an organizer of multimeric 53BP1 complexes. DYNLL1 binding stimulates 53BP1 oligomerization, and promotes 53BP1's recruitment to, and interaction with, DSB-associated chromatin. Consequently, DYNLL1 regulates 53BP1-dependent NHEJ: CSR is compromised upon deletion of Dynll1 or its transcriptional regulator Asciz, or by mutation of DYNLL1 binding motifs in 53BP1; furthermore, Brca1 mutant cells and tumours are rendered resistant to poly-ADP ribose polymerase (PARP) inhibitor treatments upon deletion of Dynll1 or Asciz. Thus, our results reveal a mechanism that regulates 53BP1-dependent NHEJ and the therapeutic response of BRCA1-deficient cancers.


Sujet(s)
Protéine BRCA1/génétique , Dynéines cytoplasmiques/métabolisme , Réparation de l'ADN par jonction d'extrémités/génétique , Inhibiteurs de poly(ADP-ribose) polymérases/pharmacologie , Facteurs de transcription/métabolisme , Protéine-1 liant le suppresseur de tumeur p53/génétique , Animaux , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Systèmes CRISPR-Cas , Lignée cellulaire tumorale , Cassures double-brin de l'ADN , Femelle , Instabilité du génome/génétique , Cellules HEK293 , Humains , Cellules MCF-7 , Souris , Souris de lignée C57BL , Souris knockout
14.
Structure ; 25(10): 1582-1588.e3, 2017 10 03.
Article de Anglais | MEDLINE | ID: mdl-28919440

RÉSUMÉ

Topoisomerase IIß binding protein 1 (TopBP1) is a critical protein-protein interaction hub in DNA replication checkpoint control. It was proposed that TopBP1 BRCT5 interacts with Bloom syndrome helicase (BLM) to regulate genome stability through either phospho-Ser304 or phospho-Ser338 of BLM. Here we show that TopBP1 BRCT5 specifically interacts with the BLM region surrounding pSer304, not pSer338. Our crystal structure of TopBP1 BRCT4/5 bound to BLM reveals recognition of pSer304 by a conserved pSer-binding pocket, and interactions between an FVPP motif N-terminal to pSer304 and a hydrophobic groove on BRCT5. This interaction utilizes the same surface of BRCT5 that recognizes the DNA damage mediator, MDC1; however the binding orientations of MDC1 and BLM are reversed. While the MDC1 interactions are largely electrostatic, the interaction with BLM has higher affinity and relies on a mix of electrostatics and hydrophobicity. We suggest that similar evolutionarily conserved interactions may govern interactions between TopBP1 and 53BP1.


Sujet(s)
Protéines de liaison à l'ADN/composition chimique , Protéines de liaison à l'ADN/métabolisme , RecQ helicases/composition chimique , RecQ helicases/métabolisme , Animaux , Sites de fixation , Protéines de transport/composition chimique , Protéines de transport/métabolisme , Cristallographie aux rayons X , Humains , Souris , Modèles moléculaires , Protéines nucléaires/composition chimique , Protéines nucléaires/métabolisme , Phosphorylation , Conformation des protéines , Sérine/métabolisme , Transactivateurs/métabolisme
15.
Mol Cell ; 66(6): 801-817, 2017 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-28622525

RÉSUMÉ

In vertebrate cells, the DNA damage response is controlled by three related kinases: ATM, ATR, and DNA-PK. It has been 20 years since the cloning of ATR, the last of the three to be identified. During this time, our understanding of how these kinases regulate DNA repair and associated events has grown profoundly, although major questions remain unanswered. Here, we provide a historical perspective of their discovery and discuss their established functions in sensing and responding to genotoxic stress. We also highlight what is known regarding their structural similarities and common mechanisms of regulation, as well as emerging non-canonical roles and how our knowledge of ATM, ATR, and DNA-PK is being translated to benefit human health.


Sujet(s)
Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Protéines de liaison au calcium/métabolisme , Noyau de la cellule/enzymologie , Altération de l'ADN , Réparation de l'ADN , Animaux , Antinéoplasiques/usage thérapeutique , Protéines mutées dans l'ataxie-télangiectasie/antagonistes et inhibiteurs , Protéines mutées dans l'ataxie-télangiectasie/composition chimique , Protéines mutées dans l'ataxie-télangiectasie/histoire , Protéines de liaison au calcium/antagonistes et inhibiteurs , Protéines de liaison au calcium/composition chimique , Protéines de liaison au calcium/histoire , Réparation de l'ADN/effets des médicaments et des substances chimiques , Activation enzymatique , Histoire du 20ème siècle , Histoire du 21ème siècle , Humains , Modèles moléculaires , Tumeurs/traitement médicamenteux , Tumeurs/enzymologie , Tumeurs/génétique , Tumeurs/anatomopathologie , Phosphorylation , Conformation des protéines , Inhibiteurs de protéines kinases/usage thérapeutique , Transduction du signal , Relation structure-activité , Protéine p53 suppresseur de tumeur/métabolisme
16.
Nat Genet ; 49(7): 1005-1014, 2017 Jul.
Article de Anglais | MEDLINE | ID: mdl-28504702

RÉSUMÉ

Genomic rearrangements are a hallmark of human cancers. Here, we identify the piggyBac transposable element derived 5 (PGBD5) gene as encoding an active DNA transposase expressed in the majority of childhood solid tumors, including lethal rhabdoid tumors. Using assembly-based whole-genome DNA sequencing, we found previously undefined genomic rearrangements in human rhabdoid tumors. These rearrangements involved PGBD5-specific signal (PSS) sequences at their breakpoints and recurrently inactivated tumor-suppressor genes. PGBD5 was physically associated with genomic PSS sequences that were also sufficient to mediate PGBD5-induced DNA rearrangements in rhabdoid tumor cells. Ectopic expression of PGBD5 in primary immortalized human cells was sufficient to promote cell transformation in vivo. This activity required specific catalytic residues in the PGBD5 transposase domain as well as end-joining DNA repair and induced structural rearrangements with PSS breakpoints. These results define PGBD5 as an oncogenic mutator and provide a plausible mechanism for site-specific DNA rearrangements in childhood and adult solid tumors.


Sujet(s)
Transformation cellulaire néoplasique/génétique , Tumeur rhabdoïde/génétique , Transposases/physiologie , Adulte , Animaux , Domaine catalytique , Lignée cellulaire , Enfant , Enfant d'âge préscolaire , Aberrations des chromosomes , Points de cassure de chromosome , Réparation de l'ADN par jonction d'extrémités/génétique , ADN tumoral/génétique , Réarrangement des gènes/génétique , Gènes suppresseurs de tumeur , Humains , Nourrisson , Souris , Souris nude , Mutagenèse dirigée , Interférence par ARN , Protéines recombinantes/métabolisme , Séquences d'acides nucléiques régulatrices , Séquences répétées terminales/génétique , Transposases/composition chimique , Transposases/génétique
17.
Genes Dev ; 30(19): 2152-2157, 2016 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-27798842

RÉSUMÉ

PAXX was identified recently as a novel nonhomologous end-joining DNA repair factor in human cells. To characterize its physiological roles, we generated Paxx-deficient mice. Like Xlf-/- mice, Paxx-/- mice are viable, grow normally, and are fertile but show mild radiosensitivity. Strikingly, while Paxx loss is epistatic with Ku80, Lig4, and Atm deficiency, Paxx/Xlf double-knockout mice display embryonic lethality associated with genomic instability, cell death in the central nervous system, and an almost complete block in lymphogenesis, phenotypes that closely resemble those of Xrcc4-/- and Lig4-/- mice. Thus, combined loss of Paxx and Xlf is synthetic-lethal in mammals.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Développement embryonnaire/génétique , Mutations synthétiques létales/génétique , Triholosides/génétique , Animaux , Apoptose/génétique , Protéines de liaison à l'ADN/métabolisme , Épistasie , Instabilité du génome/génétique , Souris , Souris de lignée C57BL , Souris knockout , Protein kinases/génétique , Protein kinases/métabolisme , Radiotolérance/génétique , Triholosides/métabolisme
18.
Cell Rep ; 16(11): 2967-2979, 2016 09 13.
Article de Anglais | MEDLINE | ID: mdl-27601299

RÉSUMÉ

Paralog of XRCC4 and XLF (PAXX) is a member of the XRCC4 superfamily and plays a role in nonhomologous end-joining (NHEJ), a DNA repair pathway critical for lymphocyte antigen receptor gene assembly. Here, we find that the functions of PAXX and XLF in V(D)J recombination are masked by redundant joining activities. Thus, combined PAXX and XLF deficiency leads to an inability to join RAG-cleaved DNA ends. Additionally, we demonstrate that PAXX function in V(D)J recombination depends on its interaction with Ku. Importantly, we show that, unlike XLF, the role of PAXX during the repair of DNA breaks does not overlap with ATM and the RAG complex. Our findings illuminate the role of PAXX in V(D)J recombination and support a model in which PAXX and XLF function during NHEJ repair of DNA breaks, whereas XLF, the RAG complex, and the ATM-dependent DNA damage response promote end joining by stabilizing DNA ends.


Sujet(s)
Lymphocytes B/métabolisme , Enzymes de réparation de l'ADN/métabolisme , Protéines de liaison à l'ADN/composition chimique , Similitude de séquences d'acides aminés , Recombinaison V(D)J/génétique , Animaux , Protéines mutées dans l'ataxie-télangiectasie/métabolisme , Systèmes CRISPR-Cas/génétique , Altération de l'ADN , Réparation de l'ADN , Protéines de liaison à l'ADN/métabolisme , Délétion de gène , Édition de gène , Réarrangement des gènes des lymphocytes B , Immunoglobulines/génétique , Autoantigène Ku/métabolisme , Modèles biologiques , Protéines oncogènes v-abl/métabolisme
19.
Nat Genet ; 48(1): 36-43, 2016 Jan.
Article de Anglais | MEDLINE | ID: mdl-26595769

RÉSUMÉ

DNA lesions encountered by replicative polymerases threaten genome stability and cell cycle progression. Here we report the identification of mutations in TRAIP, encoding an E3 RING ubiquitin ligase, in patients with microcephalic primordial dwarfism. We establish that TRAIP relocalizes to sites of DNA damage, where it is required for optimal phosphorylation of H2AX and RPA2 during S-phase in response to ultraviolet (UV) irradiation, as well as fork progression through UV-induced DNA lesions. TRAIP is necessary for efficient cell cycle progression and mutations in TRAIP therefore limit cellular proliferation, providing a potential mechanism for microcephaly and dwarfism phenotypes. Human genetics thus identifies TRAIP as a component of the DNA damage response to replication-blocking DNA lesions.


Sujet(s)
Altération de l'ADN , Nanisme/génétique , Mutation , Protéines et peptides associés aux récepteurs des facteurs de nécrose tumorale/métabolisme , Ubiquitin-protein ligases/métabolisme , Séquence d'acides aminés , Prolifération cellulaire/génétique , Enfant d'âge préscolaire , Altération de l'ADN/effets des radiations , Faciès , Histone/génétique , Histone/métabolisme , Humains , Microcéphalie/génétique , Données de séquences moléculaires , Phosphorylation , Protéine A de réplication/métabolisme , Phase S/effets des radiations , Protéines et peptides associés aux récepteurs des facteurs de nécrose tumorale/génétique , Ubiquitin-protein ligases/génétique , Rayons ultraviolets
20.
Mol Cell ; 60(3): 362-73, 2015 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-26455393

RÉSUMÉ

Repair of DNA double-strand breaks is crucial for maintaining genome integrity and is governed by post-translational modifications such as protein ubiquitylation. Here, we establish that the deubiquitylating enzyme USP4 promotes DNA-end resection and DNA repair by homologous recombination. We also report that USP4 interacts with CtIP and the MRE11-RAD50-NBS1 (MRN) complex and is required for CtIP recruitment to DNA damage sites. Furthermore, we show that USP4 is ubiquitylated on multiple sites including those on cysteine residues and that deubiquitylation of these sites requires USP4 catalytic activity and is required for USP4 to interact with CtIP/MRN and to promote CtIP recruitment and DNA repair. Lastly, we establish that regulation of interactor binding by ubiquitylation occurs more generally among USP-family enzymes. Our findings thus identify USP4 as a novel DNA repair regulator and invoke a model in which ubiquitin adducts regulate USP enzyme interactions and functions.


Sujet(s)
Cassures double-brin de l'ADN , Modèles biologiques , Réparation de l'ADN par recombinaison , Ubiquitin thiolesterase/métabolisme , Ubiquitination/physiologie , Acid anhydride hydrolases , Protéines de transport/génétique , Protéines de transport/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/métabolisme , Lignée cellulaire tumorale , Enzymes de réparation de l'ADN/génétique , Enzymes de réparation de l'ADN/métabolisme , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Endodeoxyribonucleases , Humains , Protéine homologue de MRE11 , Protéines nucléaires/génétique , Protéines nucléaires/métabolisme , Ubiquitin thiolesterase/génétique , Ubiquitin-specific proteases
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE