Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Astrophys J Suppl Ser ; 238(2)2018 Oct.
Article de Anglais | MEDLINE | ID: mdl-31160831

RÉSUMÉ

We present results from a systematic selection of tidal disruption events (TDEs) in a wide-area (4800 deg2), g + R band, Intermediate Palomar Transient Factory (iPTF) experiment. Our selection targets typical optically-selected TDEs: bright (>60% flux increase) and blue transients residing in the center of red galaxies. Using photometric selection criteria to down-select from a total of 493 nuclear transients to a sample of 26 sources, we then use follow-up UV imaging with the Neil Gehrels Swift Telescope, ground-based optical spectroscopy, and light curve fitting to classify them as 14 Type Ia supernovae (SNe Ia), 9 highly variable active galactic nuclei (AGNs), 2 confirmed TDEs, and 1 potential core-collapse supernova. We find it possible to filter AGNs by employing a more stringent transient color cut (g - r < -0.2 mag); further, UV imaging is the best discriminator for filtering SNe, since SNe Ia can appear as blue, optically, as TDEs in their early phases. However, when UV-optical color is unavailable, higher precision astrometry can also effectively reduce SNe contamination in the optical. Our most stringent optical photometric selection criteria yields a 4.5:1 contamination rate, allowing for a manageable number of TDE candidates for complete spectroscopic follow-up and real-time classification in the ZTF era. We measure a TDE per galaxy rate of 1.7 - 1.3 + 2.9 × 10 - 4 gal - 1 yr - 1 (90% CL in Poisson statistics). This does not account for TDEs outside our selection criteria, thus may not reflect the total TDE population, which is yet to be fully mapped.

2.
Science ; 358(6370): 1559-1565, 2017 12 22.
Article de Anglais | MEDLINE | ID: mdl-29038373

RÉSUMÉ

Merging neutron stars offer an excellent laboratory for simultaneously studying strong-field gravity and matter in extreme environments. We establish the physical association of an electromagnetic counterpart (EM170817) with gravitational waves (GW170817) detected from merging neutron stars. By synthesizing a panchromatic data set, we demonstrate that merging neutron stars are a long-sought production site forging heavy elements by r-process nucleosynthesis. The weak gamma rays seen in EM170817 are dissimilar to classical short gamma-ray bursts with ultrarelativistic jets. Instead, we suggest that breakout of a wide-angle, mildly relativistic cocoon engulfing the jet explains the low-luminosity gamma rays, the high-luminosity ultraviolet-optical-infrared, and the delayed radio and x-ray emission. We posit that all neutron star mergers may lead to a wide-angle cocoon breakout, sometimes accompanied by a successful jet and sometimes by a choked jet.

3.
Science ; 356(6335): 291-295, 2017 04 21.
Article de Anglais | MEDLINE | ID: mdl-28428419

RÉSUMÉ

We report the discovery of a multiply imaged, gravitationally lensed type Ia supernova, iPTF16geu (SN 2016geu), at redshift z = 0.409. This phenomenon was identified because the light from the stellar explosion was magnified more than 50 times by the curvature of space around matter in an intervening galaxy. We used high-spatial-resolution observations to resolve four images of the lensed supernova, approximately 0.3 arc seconds from the center of the foreground galaxy. The observations probe a physical scale of ~1 kiloparsec, smaller than is typical in other studies of extragalactic gravitational lensing. The large magnification and symmetric image configuration imply close alignment between the lines of sight to the supernova and to the lens. The relative magnifications of the four images provide evidence for substructures in the lensing galaxy.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE