Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Pollut ; 260: 113964, 2020 May.
Article de Anglais | MEDLINE | ID: mdl-31991349

RÉSUMÉ

The impacts of microplastic particulates in benthic freshwater organisms have been largely unexplored despite abundant plastic accumulation in the sediments of these systems. We investigated the uptake of plastic particles by benthic filter feeding quagga mussels (Dreissena bugensis) and associated toxicity exhibited through impacts on mortality, filtration rate, reproduction and oxygen consumption. Matrix Assisted Laser Desorption/Ionization Imaging Mass Spectrometry (MALDI-IMS) technology was used to assess the microplastic inclusion. For this purpose, quagga mussels were exposed to four treatments ranging from 0.0 to 0.8 g/L of a high density fluorescent red polyethylene powder in the size range of 10-45 µm for 24-h, and the targeted endpoints were quantified. Identification of several micrograms of microplastics in the digestive tract suggests rapid clearance from the water column by filtering. At the higher concentrations, about 95% of the microplastics ingested remained in the mussels after 24-h. Microplastics were found in the gills which correlated with decreasing filtration rate at higher microplastic concentrations. Despite large-scale ingestion, plastic exposure did not affect survivorship, reproduction rates, or oxygen consumption in the period examined. MALDI-IMS identified unique mass spectra that correlated with microplastic inclusion. This research suggests that microplastics can impair feeding through decreased filtration rates of filter feeding organisms, potentially resulting in a reduction of overall fitness over time and that MALDI-IMS may have the potential to identify microplastics and changes in tissue at the borders of plastic inclusion.


Sujet(s)
Dreissena , Microplastiques , Polluants chimiques de l'eau , Animaux , Bivalvia , Surveillance de l'environnement , Matières plastiques
2.
Ecotoxicol Environ Saf ; 182: 109426, 2019 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-31301595

RÉSUMÉ

Quagga (Dreissena rostriformis bugensis) and zebra (D. polymorpha) mussels are broadcast spawners that produce planktonic, free swimming veligers, a life history strategy dissimilar to native North American freshwater bivalves. Dreissenid veligers require highly nutritious food to grow and survive, and thus may be susceptible to increased mortality rates during harsh environmental conditions like cyanobacteria blooms. However, the impact of cyanobacteria and one of the toxins they can produce (microcystin) has not been evaluated in dreissenid veligers. Therefore, we exposed dreissenid veligers to eleven distinct cultures (isolates) of cyanobacteria representing Anabaena, Aphanizomenon, Dolichospermum, Microcystis, and Planktothrix species and the cyanotoxin microcystin to determine the lethality of cyanobacteria on dreissenid veligers. Six-day laboratory bioassays were performed in microplates using dreissenid veligers collected from the Detroit River, Michigan, USA. Veligers were exposed to increasing concentrations of cyanobacteria and microcystin using the green algae Chlorella minutissima as a control. Based on dose response curves formulated from a Probit model, the LC50 values for cyanobacteria used in this study range between 15.06 and 135.06 µg/L chlorophyll-a, with the LC50 for microcystin-LR at 13.03 µg/L. Because LC50 values were within ranges observed in natural waterbodies, it is possible that dreissenid recruitment may be suppressed when veliger abundances overlap with seasonal cyanobacteria blooms. Thus, the toxicity of cyanobacteria to dreissenid veligers may be useful to include in models forecasting dreissenid mussel abundance and spread.


Sujet(s)
Cyanobactéries/physiologie , Dreissena/physiologie , Prolifération d'algues nuisibles , Animaux , Bivalvia , Chlorella , Chlorophylle/analogues et dérivés , Eau douce , Toxines de la flore et de la faune marines , Microcystines , Microcystis , Plancton , Rivières
3.
Environ Toxicol Chem ; 38(2): 368-374, 2019 02.
Article de Anglais | MEDLINE | ID: mdl-30362595

RÉSUMÉ

The temporal expansion of harmful algal blooms, primarily associated with cyanobacteria, may impact aquatic organisms at vulnerable life-history stages. Broadcast spawning species release gametes into the water column for external fertilization, directly exposing sperm to potential aquatic stressors. To determine if cyanobacteria can disrupt reproduction in freshwater broadcast spawners, we evaluated sublethal effects of cyanobacteria exposure on quagga mussel (Dreissena rostriformis bugensis) sperm. In laboratory studies, sperm were collected after inducing mussels to spawn using serotonin and exposed to 11 cultures of cyanobacteria including Anabaena flos-aquae, Aphanizomenon flos-aquae, Dolichospermum lemmermannii, Gloeotrichia echinulata, 5 cultures of Microcystis aeruginosa, M. wesenbergii, and Planktothrix suspensa. Sperm motility, using endpoints of cumulative distance traveled and mean velocity, was calculated for a minimum of 10 individual sperm using a novel optical biotracking assay method. The distance and velocity at which sperm traveled decreased when exposed to Aphanizomenon flos-aquae and 2 M. aeruginosa cultures. Our findings indicate that cyanobacteria impede the motility of quagga mussel sperm, which can potentially result in reproductive impairments to mussels and potentially other broadcast spawning species. Environ Toxicol Chem 2019;38:368-374. © 2018 SETAC.


Sujet(s)
Cyanobactéries/croissance et développement , Dreissena/physiologie , Espèce introduite , Mobilité des spermatozoïdes/physiologie , Animaux , Cyanobactéries/métabolisme , Eutrophisation , Eau douce/composition chimique , Mâle , Reproduction/physiologie , Spécificité d'espèce , Spermatozoïdes/physiologie , Microbiologie de l'eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE