Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
FEMS Microbiol Lett ; 2024 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-39076007

RÉSUMÉ

Pretreatment of lignocellulosic biomass produces growth inhibitory substances such as furfural which is toxic to microorganisms. Acinetobacter baylyi ADP1 cannot use furfural as a carbon source, instead it biotransforms this compound into difurfuryl ether using the NADH-dependent dehydrogenases AreB and FrmA during aerobic acetate catabolism. However, NADH consumption for furfural biotransformation compromises aerobic growth of A. baylyi ADP1. Depending on the growth phase, several genes related to acetate catabolism and oxidative phosphorylation changed their expression indicating that central metabolic pathways were affected by the presence of furfural. During the exponential growth phase, reactions involved in the formation of NADPH (icd gene) and NADH (sfcA gene) were preferred when furfural was present. Therefore a higher NADH and NADPH production might support furfural biotransformation and biomass production, respectively. In contrast, in the stationary growth phase genes of the glyoxylate shunt were overexpressed probably to save carbon compounds for biomass formation, and only NADH regeneration was appreciated. Finally, disruption of the frmA or areB gene in A. baylyi ADP1 led to a decrease in growth adaptation and in the capacity to biotransform furfural. The characterization of this physiological behavior clarifies the impact of furfural in Acinetobacter metabolism.

2.
Microbiology (Reading) ; 163(7): 1052-1064, 2017 07.
Article de Anglais | MEDLINE | ID: mdl-28671531

RÉSUMÉ

An Acinetobacter strain, designated ACE, was isolated in the laboratory. Phylogenetic tests and average nucleotide identity value comparisons suggested that ACE belongs to the species Acinetobacterschindleri. We report for the first time the complete genome sequence of an A. schindleri strain, which consists of a single circular chromosome of 3 001 209 bp with an overall DNA G+C content of 42.9 mol% and six plasmids that account for 266 844 bp of extrachromosomal material. The presence or absence of genes related to carbon catabolism and antibiotic resistance were in agreement with the phenotypic characterization of ACE. This strain grew faster and with a higher biomass yield on acetate than the reference strain Acinetobacter baylyi ADP1. However, ACE did not use aromatic compounds and was unable to grow on common carbon sources, such as glucose, xylose, glycerol or citrate. The gluconeogenic and the catechol pathways are complete in ACE, but compounds that are converted to protocatechuate did not sustain growth since some genes of this pathway are missing. Likewise, this strain could not grow on glucose because it lacks the genes of the Entner-Doudoroff pathway. Minimal inhibitory concentration data showed that ACE was susceptible to most of the antimicrobial agents recommended for the clinical treatment of Acinetobacter spp. Some genes related to a possible human-microbe interaction were found in the ACE genome. ACE is likely to have a low pathogenic risk, as is the case with other A. schindleri strains. These results provide a valuable reference for broadening the knowledge of the biology of Acinetobacter.


Sujet(s)
Acétates/métabolisme , Acinetobacter/génétique , Acinetobacter/métabolisme , Acinetobacter/classification , Acinetobacter/isolement et purification , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Composition en bases nucléiques , Génomique , Glucose/métabolisme , Laboratoires , Phylogenèse , Plasmides/génétique , Plasmides/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE