Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Sci Rep ; 10(1): 14881, 2020 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-32913199

RÉSUMÉ

Bose-Einstein condensation (BEC) of magnons is one of the few macroscopic quantum phenomena observable at room temperature. Due to the competition of the exchange and the magnetic dipole interactions, the minimum-energy magnon state is doubly degenerate and corresponds to two antiparallel non-zero wavevectors. Correspondingly, the room-temperature magnon BEC differs essentially from other condensates, since it takes place simultaneously at ± kmin. The degeneracy of BEC and interaction between its two components have significant impact on condensate properties. Phase locking of the two condensates causes formation of a standing wave of the condensate density and quantized vortices. Additionally, interaction between the two components is believed to be important for stabilization of the condensate with respect to a real-space collapse. Thus, the possibility to create a non-degenerate, single-component condensate is decisive for understanding of underlying physics of magnon BEC. Here, we experimentally demonstrate an approach, which allows one to accomplish this challenging task. We show that this can be achieved by using a separation of the two components of the degenerate condensate in the real space by applying a local pulsed magnetic field, which causes their motion in the opposite directions. Thus, after a certain delay, the two clouds corresponding to different components become well separated in the real space. We find that motion of the clouds can be described well based on the peculiarities of magnon dispersion characteristics. Additionally, we show that, during the motion, the condensate cloud harvests non-condensed magnons, which results in a partial compensation of condensate depletion.

2.
Nat Commun ; 11(1): 1691, 2020 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-32245978

RÉSUMÉ

Bose-Einstein condensation of magnons is one of few macroscopic quantum phenomena observed at room temperature. Since its discovery, it became an object of intense research, which led to the observation of many exciting phenomena such as quantized vortices, second sound, and Bogolyubov waves. However, it remained unclear what physical mechanisms can be responsible for the spatial stability of the magnon condensate. Indeed, since magnons are believed to exhibit attractive interaction, it is generally expected that the condensate is unstable with respect to the real-space collapse, contrarily to experimental findings. Here, we provide direct experimental evidence that magnons in a condensate exhibit repulsive interaction resulting in the condensate stabilization and propose a mechanism, which is responsible for this interaction. Our experimental conclusions are additionally supported by the theoretical model based on the Gross-Pitaevskii equation. Our findings solve a long-standing problem, providing a new insight into the physics of magnon Bose-Einstein condensates.

3.
Sci Rep ; 9(1): 9063, 2019 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-31227729

RÉSUMÉ

Second sound is a quantum mechanical effect manifesting itself as a wave-like (in contrast with diffusion) heat transfer, or energy propagation, in a gas of quasi-particles. So far, this phenomenon has been observed only in an equilibrium gas of phonons existing in liquid/solid helium, or in dielectric crystals (Bi, NaF) at low temperatures. Here, we report observation of a room-temperature magnonic second sound, or a wave-like transport of both energy and spin angular momentum, in a quasi-equilibrium gas of magnons undergoing Bose-Einstein condensation (BEC) in a ferrite film. Due to the contact of the magnon gas with pumping photons and phonons, dispersion of the magnonic second sound differ qualitatively from the phononic case, as there is no diffusion regime, and the second sound velocity remains finite at low wavenumbers. Formation of BEC in the gas of magnons modifies the second sound properties by creating an additional channel of energy relaxation.

4.
Phys Rev Lett ; 99(1): 017004, 2007 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-17678184

RÉSUMÉ

Josephson coupling between an s- and d-wave superconductor through a 50 nm thick Ca1-xSrxCuO2 antiferromagnetic layer was observed for the hybrid Nb/Au/Ca1-xSrxCuO2/YBa2Cu3O7-delta heterostructures and investigated as a function of temperature, magnetic field, and applied millimeter-wave electromagnetic radiation. The magnetic field dependence of the supercurrent I(c)(H) exhibits anomalously rapid oscillations, which is the first experimental evidence of the theoretically predicted giant magneto-oscillations in Josephson junctions with antiferromagnetic interlayers.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE