Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 13(1): 3609, 2023 Mar 03.
Article de Anglais | MEDLINE | ID: mdl-36869125

RÉSUMÉ

We recently proposed a new approach for the real-time monitoring of particle therapy treatments with the goal of achieving high sensitivities on the particle range measurement already at limited counting statistics. This method extends the Prompt Gamma (PG) timing technique to obtain the PG vertex distribution from the exclusive measurement of particle Time-Of-Flight (TOF). It was previously shown, through Monte Carlo simulation, that an original data reconstruction algorithm (Prompt Gamma Time Imaging) allows to combine the response of multiple detectors placed around the target. The sensitivity of this technique depends on both the system time resolution and the beam intensity. At reduced intensities (Single Proton Regime-SPR), a millimetric proton range sensitivity can be achieved, provided the overall PG plus proton TOF can be measured with a 235 ps (FWHM) time resolution. At nominal beam intensities, a sensitivity of a few mm can still be obtained by increasing the number of incident protons included in the monitoring procedure. In this work we focus on the experimental feasibility of PGTI in SPR through the development of a multi-channel, Cherenkov-based PG detector with a targeted time resolution of 235 ps (FWHM): the TOF Imaging ARrAy (TIARA). Since PG emission is a rare phenomenon, TIARA design is led by the concomitant optimisation of its detection efficiency and Signal to Noise Ratio (SNR). The PG module that we developed is composed of a small PbF[Formula: see text] crystal coupled to a silicon photoMultiplier to provide the time stamp of the PG. This module is currently read in time coincidence with a diamond-based beam monitor placed upstream the target/patient to measure the proton time of arrival. TIARA will be eventually composed of 30 identical modules uniformly arranged around the target. The absence of a collimation system and the use of Cherenkov radiators are both crucial to increase the detection efficiency and the SNR, respectively. A first prototype of the TIARA block detector was tested with 63 MeV protons delivered from a cyclotron: a time resolution of 276 ps (FWHM) was obtained, resulting in a proton range sensitivity of 4 mm at 2[Formula: see text] with the acquisition of only 600 PGs. A second prototype was also evaluated with 148 MeV protons delivered from a synchro-cyclotron obtaining a time resolution below 167 ps (FWHM) for the gamma detector. Moreover, using two identical PG modules, it was shown that a uniform sensitivity on the PG profiles would be achievable by combining the response of gamma detectors uniformly distributed around the target. This work provides the experimental proof-of-concept for the development of a high sensitivity detector that can be used to monitor particle therapy treatments and potentially act in real-time if the irradiation does not comply to treatment plan.

2.
Phys Med Biol ; 66(13)2021 06 22.
Article de Anglais | MEDLINE | ID: mdl-34020438

RÉSUMÉ

We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.


Sujet(s)
Protonthérapie , Imagerie diagnostique , Rayons gamma , Méthode de Monte Carlo , Fantômes en imagerie , Protons
3.
iScience ; 21: 68-83, 2019 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-31655257

RÉSUMÉ

Computed tomography is a powerful medical imaging modality for longitudinal studies in cancer to follow neoplasia progression and evaluate anticancer therapies. Here, we report the generation of a photon-counting micro-computed tomography (PC-CT) method based on hybrid pixel detectors with enhanced sensitivity and precision of tumor imaging. We then applied PC-CT for longitudinal imaging in a clinically relevant liver cancer model, the Alb-R26Met mice, and found a remarkable heterogeneity in the dynamics for tumors at the initiation phases. Instead, the growth curve of evolving tumors exhibited a comparable exponential growth, with a constant doubling time. Furthermore, longitudinal PC-CT imaging in mice treated with a combination of MEK and BCL-XL inhibitors revealed a drastic tumor regression accompanied by a striking remodeling of macrophages in the tumor microenvironment. Thus, PC-CT is a powerful system to detect cancer initiation and progression, and to monitor its evolution during treatment.

4.
Phys Med Biol ; 58(16): 5593-611, 2013 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-23892709

RÉSUMÉ

Monte Carlo simulation (MCS) plays a key role in medical applications, especially for emission tomography and radiotherapy. However MCS is also associated with long calculation times that prevent its use in routine clinical practice. Recently, graphics processing units (GPU) became in many domains a low cost alternative for the acquisition of high computational power. The objective of this work was to develop an efficient framework for the implementation of MCS on GPU architectures. Geant4 was chosen as the MCS engine given the large variety of physics processes available for targeting different medical imaging and radiotherapy applications. In addition, Geant4 is the MCS engine behind GATE which is actually the most popular medical applications' simulation platform. We propose the definition of a global strategy and associated structures for such a GPU based simulation implementation. Different photon and electron physics effects are resolved on the fly directly on GPU without any approximations with respect to Geant4. Validations have shown equivalence in the underlying photon and electron physics processes between the Geant4 and the GPU codes with a speedup factor of 80-90. More clinically realistic simulations in emission and transmission imaging led to acceleration factors of 400-800 respectively compared to corresponding GATE simulations.


Sujet(s)
Infographie , Imagerie diagnostique , Méthode de Monte Carlo , Radiothérapie , Électrons , Photons , Diffusion de rayonnements , Tomographie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...