Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 53
Filtrer
1.
Am J Vet Res ; : 1-8, 2024 Jan 27.
Article de Anglais | MEDLINE | ID: mdl-38262139

RÉSUMÉ

Antimicrobial resistance (AMR) is a critical One Health concern with implications for human, animal, plant, and environmental health. Antimicrobial susceptibility testing (AST), antimicrobial resistance testing (ART), and surveillance practices must be harmonized across One Health sectors to ensure consistent detection and reporting practices. Veterinary diagnostic laboratory stewardship, clinical outcomes studies, and training for current and future generations of veterinarians and laboratorians are necessary to minimize the spread of AMR and move veterinary medicine forward into an age of better antimicrobial use practices. The purpose of this article is to describe current knowledge gaps present in the literature surrounding ART, AST, and clinical or surveillance applications of these methods and to suggest areas where AMR research can fill these knowledge gaps. The related Currents in One Health by Maddock et al, JAVMA, March 2024, addresses current limitations to the use of genotypic ART methods in clinical veterinary practice.

2.
Plant Genome ; 16(4): e20381, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37604795

RÉSUMÉ

Next-generation sequencing (NGS) technology advancements continue to reduce the cost of high-throughput genome-wide genotyping for breeding and genetics research. Skim sequencing, which surveys the entire genome at low coverage, has become feasible for quantitative trait locus (QTL) mapping and genomic selection in various crops. However, the genome complexity of allopolyploid crops such as wheat (Triticum aestivum L.) still poses a significant challenge for genome-wide genotyping. Targeted sequencing of the protein-coding regions (i.e., exome) reduces sequencing costs compared to whole genome re-sequencing and can be used for marker discovery and genotyping. We developed a method called skim exome capture (SEC) that combines the strengths of these existing technologies and produces targeted genotyping data while decreasing the cost on a per-sample basis compared to traditional exome capture. Specifically, we fragmented genomic DNA using a tagmentation approach, then enriched those fragments for the low-copy genic portion of the genome using commercial wheat exome baits and multiplexed the sequencing at different levels to achieve desired coverage. We demonstrated that for a library of 48 samples, ∼7-8× target coverage was sufficient for high-quality variant detection. For higher multiplexing levels of 528 and 1056 samples per library, we achieved an average coverage of 0.76× and 0.32×, respectively. Combining these lower coverage SEC sequencing data with genotype imputation using a customized wheat practical haplotype graph database that we developed, we identified hundreds of thousands of high-quality genic variants across the genome. The SEC method can be used for high-resolution QTL mapping, genome-wide association studies, genomic selection, and other downstream applications.


Sujet(s)
Exome , Triticum , Génotype , Triticum/génétique , Étude d'association pangénomique , Polymorphisme de nucléotide simple , Amélioration des plantes
3.
Front Plant Sci ; 14: 1132108, 2023.
Article de Anglais | MEDLINE | ID: mdl-36909445

RÉSUMÉ

In many regions worldwide wheat (Triticum aestivum L.) plants experience terminal high temperature stress during the grain filling stage, which is a leading cause for single seed weight decrease and consequently for grain yield reduction. An approach to mitigate high temperature damage is to develop tolerant cultivars using the conventional breeding approach which involves identifying tolerant lines and then incorporating the tolerant traits in commercial varieties. In this study, we evaluated the terminal heat stress tolerance of 304 diverse elite winter wheat lines from wheat breeding programs in the US, Australia, and Serbia in controlled environmental conditions. Chlorophyll content and yield traits were measured and calculated as the percentage of non-stress control. The results showed that there was significant genetic variation for chlorophyll retention and seed weight under heat stress conditions. The positive correlation between the percent of chlorophyll content and the percent of single seed weight was significant. Two possible mechanisms of heat tolerance during grain filling were proposed. One represented by wheat line OK05723W might be mainly through the current photosynthesis since the high percentage of single seed weight was accompanied with high percentages of chlorophyll content and high shoot dry weight, and the other represented by wheat Line TX04M410164 might be mainly through the relocation of reserves since the high percentage of single seed weight was accompanied with low percentages of chlorophyll content and low shoot dry weight under heat stress. The tolerant genotypes identified in this study should be useful for breeding programs after further validation.

4.
Front Med (Lausanne) ; 10: 1072767, 2023.
Article de Anglais | MEDLINE | ID: mdl-36950510

RÉSUMÉ

Background: Manually keeping up-to-date with regulations such as directives, guidance, laws, and ordinances related to cell and gene therapy is a labor-intensive process. We used machine learning (ML) algorithms to create an augmented intelligent system to optimize systematic screening of global regulations to improve efficiency and reduce overall labor and missed regulations. Methods: Combining Boolean logic and artificial intelligence (i.e., augmented intelligence) for the search process, ML algorithms were used to identify and suggest relevant cell and gene therapy regulations. Suggested regulations were delivered to a landing page for further subject matter expert (SME) tagging of words/phrases to provide system relevance on functional words. Ongoing learning from the repository regulations continued to increase system reliability and performance. The automated ability to train and retrain the system allows for continued refinement and improvement of system accuracy. Automated daily searches for applicable regulations in global databases provide ongoing opportunities to update the repository. Results: Compared to manual searching, which required 3-4 SMEs to review ~115 regulations, the current system performance, with continuous system learning, requires 1 full-time equivalent to process approximately 9,000 regulations/day. Currently, system performance has 86% overall accuracy, a recommend recall of 87%, and a reject recall of 84%. A conservative search strategy is intentionally used to permit SMEs to assess low-recommended regulations in order to prevent missing any applicable regulations. Conclusion: Compared to manual searches, our custom automated search system greatly improves the management of cell and gene therapy regulations and is efficient, cost effective, and accurate.

5.
Int J Antimicrob Agents ; 61(5): 106762, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-36804369

RÉSUMÉ

BACKGROUND: Cefepime is a first-line agent for empiric sepsis therapy; however, cefepime use may be associated with increased mortality for extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-E) in an MIC-dependent manner. This study aimed to compare the efficacy of empiric cefepime versus meropenem for bloodstream infections (BSI) caused by ceftriaxone-resistant Escherichia coli and Klebsiella pneumoniae with cefepime MICs ≤ 2 mg/L. METHODS: This single-center retrospective cohort study included patients admitted from October 2010 to August 2020 who received cefepime or meropenem empirically for sepsis with a blood culture growing ceftriaxone-resistant Escherichia coli or Klebsiella pneumoniae. The primary outcome was 30-day mortality; secondary endpoints included 14-day mortality, recurrent BSI, readmission and recurrent infection within 90 days, time to clinical resolution of infection, time to clinical stability, and clinical stability at 48 hours. RESULTS: Fifty-four patients met inclusion criteria: 36 received meropenem and 18 received cefepime. The median (IQR) treatment durations of cefepime and meropenem were 3 (2-6) days and 7 (5-10) days, respectively. Thirty-day and 14-day mortality were similar between cefepime and meropenem (11.1% vs. 2.8%; P = 0.255 and 5.6% vs. 2.8%; P = 1.00, respectively). Cefepime was associated with longer time to clinical stability compared with meropenem (median 38.48 hours vs. 21.26; P = 0.016). CONCLUSION: Mortality was similar between groups, although most patients who received cefepime empirically were ultimately transitioned to a carbapenem to complete the full treatment course. Empiric cefepime was associated with a delay in achieving clinical stability when compared with meropenem to treat BSI caused by ceftriaxone-resistant Enterobacterales, even when cefepime-susceptible.


Sujet(s)
Bactériémie , Infections à Escherichia coli , Infections à Klebsiella , Sepsie , Humains , Céfépime/usage thérapeutique , Ceftriaxone/usage thérapeutique , Antibactériens/pharmacologie , Antibactériens/usage thérapeutique , Méropénème/usage thérapeutique , Escherichia coli , Klebsiella pneumoniae , Études rétrospectives , Bactériémie/traitement médicamenteux , Infections à Escherichia coli/traitement médicamenteux , Sepsie/traitement médicamenteux , Tests de sensibilité microbienne , bêta-Lactamases/usage thérapeutique , Infections à Klebsiella/traitement médicamenteux
6.
Nat Commun ; 13(1): 6287, 2022 10 21.
Article de Anglais | MEDLINE | ID: mdl-36271077

RÉSUMÉ

Puccinia graminis f.sp. tritici (Pgt) causes stem rust disease in wheat that can result in severe yield losses. The factors driving the evolution of its virulence and adaptation remain poorly characterized. We utilize long-read sequencing to develop a haplotype-resolved genome assembly of a U.S. isolate of Pgt. Using Pgt haplotypes as a reference, we characterize the structural variants (SVs) and single nucleotide polymorphisms in a diverse panel of isolates. SVs impact the repertoire of predicted effectors, secreted proteins involved in host-pathogen interaction, and show evidence of purifying selection. By analyzing global and local genomic ancestry we demonstrate that the origin of 8 out of 12 Pgt clades is linked with either somatic hybridization or sexual recombination between the diverged donor populations. Our study shows that SVs and admixture events appear to play an important role in broadening Pgt virulence and the origin of highly virulent races, creating a resource for studying the evolution of Pgt virulence and preventing future epidemic outbreaks.


Sujet(s)
Basidiomycota , Triticum , Triticum/génétique , Maladies des plantes/génétique , Métagénomique , Basidiomycota/génétique
7.
Nat Commun ; 13(1): 3044, 2022 06 01.
Article de Anglais | MEDLINE | ID: mdl-35650212

RÉSUMÉ

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Sujet(s)
Aegilops , Basidiomycota , Aegilops/génétique , Basidiomycota/génétique , Cartographie chromosomique , Clonage moléculaire , Résistance à la maladie/génétique , Gènes de plante/génétique , Amélioration des plantes , Maladies des plantes/génétique , Puccinia (genre) , Triticum/génétique
8.
G3 (Bethesda) ; 12(2)2022 02 04.
Article de Anglais | MEDLINE | ID: mdl-34751373

RÉSUMÉ

To improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions. Population haplotypes were inferred for the reference genome intervals defined by the boundaries of the high-quality gene models. Missing genotypes in the inference panels, composed of wheat cultivars or recombinant inbred lines genotyped by exome capture, genotyping-by-sequencing (GBS), or whole-genome skim-seq sequencing approaches, were imputed using the Wheat PHG database. Though imputation accuracy varied depending on the method of sequencing and coverage depth, we found 92% imputation accuracy with 0.01× sequence coverage, which was slightly lower than the accuracy obtained using the 0.5× sequence coverage (96.6%). Compared to Beagle, on average, PHG imputation was ∼3.5% (P-value < 2 × 10-14) more accurate, and showed 27% higher accuracy at imputing a rare haplotype introgressed from a wild relative into wheat. We found reduced accuracy of imputation with independent 2× GBS data (88.6%), which increases to 89.2% with the inclusion of parental haplotypes in the database. The accuracy reduction with GBS is likely associated with the small overlap between GBS markers and the exome capture dataset, which was used for constructing PHG. The highest imputation accuracy was obtained with exome capture for the wheat D genome, which also showed the highest levels of linkage disequilibrium and proportion of identity-by-descent regions among accessions in the PHG database. We demonstrate that genetic mapping based on genotypes imputed using PHG identifies SNPs with a broader range of effect sizes that together explain a higher proportion of genetic variance for heading date and meiotic crossover rate compared to previous studies.


Sujet(s)
Polymorphisme de nucléotide simple , Triticum , Animaux , Exome , Génotype , Haplotypes/génétique , Mémorisation et recherche des informations , Triticum/génétique
9.
Theor Appl Genet ; 134(8): 2671-2686, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-34013456

RÉSUMÉ

KEY MESSAGE: The article reports a powerful but simple approach for high-resolution mapping and eventual map-based cloning of agronomically important genes from distant relatives of wheat, using the already existing germplasm resources. Wild relatives of wheat are a rich reservoir of genetic diversity for its improvement. The effective utilization of distant wild relatives in isolation of agronomically important genes is hindered by the lack of recombination between the homoeologous chromosomes. In this study, we propose a simple yet powerful approach that can be applied for high-resolution mapping of a targeted gene from wheat's distant gene pool members. A wheat-Aegilops geniculata translocation line TA5602 with a small terminal segment from chromosome 5 Mg of Ae. geniculata translocated to 5D of wheat contains genes Lr57 and Yr40 for leaf rust and stripe rust resistance, respectively. To map these genes, TA5602 was crossed with a susceptible Ae. geniculata 5 Mg addition line. Chromosome pairing between the 5 Mg chromosomes of susceptible and resistant parents resulted in the development of a high-resolution mapping panel for the targeted genes. Next-generation-sequencing data from flow-sorted 5 Mg chromosome of Ae. geniculata allowed us to generate 5 Mg-specific markers. These markers were used to delineate Lr57 and Yr40 genes each to distinct ~ 1.5 Mb physical intervals flanked by gene markers on 5 Mg. The method presented here will allow researchers worldwide to utilize existing germplasm resources in genebanks and seed repositories toward routinely performing map-based cloning of important genes from tertiary gene pools of wheat.


Sujet(s)
Cartographie chromosomique/méthodes , Chromosomes de plante/génétique , Résistance à la maladie/génétique , Régulation de l'expression des gènes végétaux , Maladies des plantes/génétique , Protéines végétales/métabolisme , Triticum/génétique , Ascomycota/physiologie , Résistance à la maladie/immunologie , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Protéines végétales/génétique , Triticum/croissance et développement , Triticum/microbiologie
10.
Mol Plant ; 14(7): 1053-1070, 2021 07 05.
Article de Anglais | MEDLINE | ID: mdl-33991673

RÉSUMÉ

Disease-resistance (R) gene cloning in wheat (Triticum aestivum) has been accelerated by the recent surge of genomic resources, facilitated by advances in sequencing technologies and bioinformatics. However, with the challenges of population growth and climate change, it is vital not only to clone and functionally characterize a few handfuls of R genes, but also to do so at a scale that would facilitate the breeding and deployment of crops that can recognize the wide range of pathogen effectors that threaten agroecosystems. Pathogen populations are continually changing, and breeders must have tools and resources available to rapidly respond to those changes if we are to safeguard our daily bread. To meet this challenge, we propose the creation of a wheat R-gene atlas by an international community of researchers and breeders. The atlas would consist of an online directory from which sources of resistance could be identified and deployed to achieve more durable resistance to the major wheat pathogens, such as wheat rusts, blotch diseases, powdery mildew, and wheat blast. We present a costed proposal detailing how the interacting molecular components governing disease resistance could be captured from both the host and the pathogen through biparental mapping, mutational genomics, and whole-genome association genetics. We explore options for the configuration and genotyping of diversity panels of hexaploid and tetraploid wheat, as well as their wild relatives and major pathogens, and discuss how the atlas could inform a dynamic, durable approach to R-gene deployment. Set against the current magnitude of wheat yield losses worldwide, recently estimated at 21%, this endeavor presents one route for bringing R genes from the lab to the field at a considerable speed and quantity.


Sujet(s)
Atlas comme sujet , Résistance à la maladie/génétique , Gènes de plante , Maladies des plantes/génétique , Triticum/génétique , Produits agricoles/génétique , Amélioration des plantes
11.
Phytopathology ; 111(7): 1064-1079, 2021 07.
Article de Anglais | MEDLINE | ID: mdl-33200960

RÉSUMÉ

Scientific communication is facilitated by a data-driven, scientifically sound taxonomy that considers the end-user's needs and established successful practice. In 2013, the Fusarium community voiced near unanimous support for a concept of Fusarium that represented a clade comprising all agriculturally and clinically important Fusarium species, including the F. solani species complex (FSSC). Subsequently, this concept was challenged in 2015 by one research group who proposed dividing the genus Fusarium into seven genera, including the FSSC described as members of the genus Neocosmospora, with subsequent justification in 2018 based on claims that the 2013 concept of Fusarium is polyphyletic. Here, we test this claim and provide a phylogeny based on exonic nucleotide sequences of 19 orthologous protein-coding genes that strongly support the monophyly of Fusarium including the FSSC. We reassert the practical and scientific argument in support of a genus Fusarium that includes the FSSC and several other basal lineages, consistent with the longstanding use of this name among plant pathologists, medical mycologists, quarantine officials, regulatory agencies, students, and researchers with a stake in its taxonomy. In recognition of this monophyly, 40 species described as genus Neocosmospora were recombined in genus Fusarium, and nine others were renamed Fusarium. Here the global Fusarium community voices strong support for the inclusion of the FSSC in Fusarium, as it remains the best scientific, nomenclatural, and practical taxonomic option available.


Sujet(s)
Fusarium , Fusarium/génétique , Phylogenèse , Maladies des plantes , Plantes
12.
Theor Appl Genet ; 132(1): 163-175, 2019 Jan.
Article de Anglais | MEDLINE | ID: mdl-30341494

RÉSUMÉ

KEY MESSAGE: Development of a complete wheat-Thinopyrum junceiforme amphiploid facilitated identification of resistance to multiple pests and abiotic stress derived from the wild species and shed new light on its genome composition. Wheat production is facing numerous challenges from biotic and abiotic stresses. Alien gene transfer has been an effective approach for wheat germplasm enhancement. Thinopyrum junceiforme, also known as sea wheatgrass (SWG), is a distant relative of wheat and a relatively untapped source for wheat improvement. In the present study, we developed a complete amphiploid, 13G819, between emmer wheat and SWG for the first time. Analysis of the chromosome constitution of the wheat-SWG amphiploid by multiple-color genomic in situ hybridization indicated that SWG is an allotetraploid with its J1 genome closely related to Th. bessarabicum and Th. elongatum, and its J2 genome was derived from an unknown source. Two SWG-derived perennial wheat lines, 14F3516 and 14F3536, are partial amphiploids and carry 13 SWG chromosomes of mixed J1 and J2 genome composition, suggesting cytological instability. We challenged the amphiploid 13G819 with various abiotic and biotic stress treatments together with its emmer wheat parent. Compared to its emmer wheat parent, the amphiploid showed high tolerance to waterlogging, manganese toxicity and salinity, low nitrogen and possibly to heat as well. The amphiploid 13G819 is also highly resistant to the wheat streak mosaic virus (temperature insensitive) and Fusarium head blight. All three amphiploids had solid stems, which confer resistance to wheat stem sawflies. All these traits make SWG an excellent source for improving wheat resistance to diseases and insects and tolerance to abiotic stress.


Sujet(s)
Résistance à la maladie/génétique , Poaceae/génétique , Stress physiologique/génétique , Chromosomes de plante , Croisements génétiques , Fusarium/pathogénicité , Hybridation in situ , Amélioration des plantes , Maladies des plantes/génétique , Maladies des plantes/microbiologie , Triticum/génétique
13.
G3 (Bethesda) ; 9(1): 125-133, 2019 01 09.
Article de Anglais | MEDLINE | ID: mdl-30420469

RÉSUMÉ

Genome-wide single nucleotide polymorphism (SNP) variation allows for the capture of haplotype structure in populations and prediction of unobserved genotypes based on inferred regions of identity-by-descent (IBD). Here we have used a first-generation wheat haplotype map created by targeted re-sequencing of low-copy genomic regions in the reference panel of 62 lines to impute marker genotypes in a diverse panel of winter wheat cultivars from the U.S. Great Plains. The IBD segments between the reference population and winter wheat cultivars were identified based on SNP genotyped using the 90K iSelect wheat array and genotyping by sequencing (GBS). A genome-wide association study and genomic prediction of resistance to stripe rust in winter wheat cultivars showed that an increase in marker density achieved by imputation improved both the power and precision of trait mapping and prediction. The majority of the most significant marker-trait associations belonged to imputed genotypes. With the vast amount of SNP variation data accumulated for wheat in recent years, the presented imputation framework will greatly improve prediction accuracy in breeding populations and increase resolution of trait mapping hence, facilitate cross-referencing of genotype datasets available across different wheat populations.


Sujet(s)
Résistance à la maladie/génétique , Maladies des plantes/génétique , Locus de caractère quantitatif/génétique , Triticum/génétique , Basidiomycota/génétique , Basidiomycota/pathogénicité , Cartographie chromosomique , Basse température , Génome végétal/génétique , Étude d'association pangénomique , Génomique , Génotype , Haplotypes/génétique , Phénotype , Amélioration des plantes , Maladies des plantes/microbiologie , Polymorphisme de nucléotide simple/génétique , Saisons , Triticum/croissance et développement , Triticum/microbiologie
14.
Front Plant Sci ; 9: 380, 2018.
Article de Anglais | MEDLINE | ID: mdl-29636761

RÉSUMÉ

Stem rust (caused by Puccinia graminis f. sp. tritici Erikss. & E. Henn.), is a major disease in wheat (Triticum aestivium L.). However, in recent years it occurs rarely in Nebraska due to weather and the effective selection and gene pyramiding of resistance genes. To understand the genetic basis of stem rust resistance in Nebraska winter wheat, we applied genome-wide association study (GWAS) on a set of 270 winter wheat genotypes (A-set). Genotyping was carried out using genotyping-by-sequencing and ∼35,000 high-quality SNPs were identified. The tested genotypes were evaluated for their resistance to the common stem rust race in Nebraska (QFCSC) in two replications. Marker-trait association identified 32 SNP markers, which were significantly (Bonferroni corrected P < 0.05) associated with the resistance on chromosome 2D. The chromosomal location of the significant SNPs (chromosome 2D) matched the location of Sr6 gene which was expected in these genotypes based on pedigree information. A highly significant linkage disequilibrium (LD, r2 ) was found between the significant SNPs and the specific SSR marker for the Sr6 gene (Xcfd43). This suggests the significant SNP markers are tagging Sr6 gene. Out of the 32 significant SNPs, eight SNPs were in six genes that are annotated as being linked to disease resistance in the IWGSC RefSeq v1.0. The 32 significant SNP markers were located in nine haplotype blocks. All the 32 significant SNPs were validated in a set of 60 different genotypes (V-set) using single marker analysis. SNP markers identified in this study can be used in marker-assisted selection, genomic selection, and to develop KASP (Kompetitive Allele Specific PCR) marker for the Sr6 gene. HIGHLIGHTS: Novel SNPs for Sr6 gene, an important stem rust resistant gene, were identified and validated in this study. These SNPs can be used to improve stem rust resistance in wheat.

15.
Science ; 358(6370): 1604-1606, 2017 12 22.
Article de Anglais | MEDLINE | ID: mdl-29269474

RÉSUMÉ

Puccinia graminis f. sp. tritici (Pgt) causes wheat stem rust, a devastating fungal disease. The Sr35 resistance gene confers immunity against this pathogen's most virulent races, including Ug99. We used comparative whole-genome sequencing of chemically mutagenized and natural Pgt isolates to identify a fungal gene named AvrSr35 that is required for Sr35 avirulence. The AvrSr35 gene encodes a secreted protein capable of interacting with Sr35 and triggering the immune response. We show that the origin of Pgt isolates virulent on Sr35 is associated with the nonfunctionalization of the AvrSr35 gene by the insertion of a mobile element. The discovery of AvrSr35 provides a new tool for Pgt surveillance, identification of host susceptibility targets, and characterization of the molecular determinants of immunity in wheat.


Sujet(s)
Basidiomycota/pathogénicité , Gènes de plante , Maladies des plantes/génétique , Maladies des plantes/microbiologie , Triticum/génétique , Triticum/microbiologie , Basidiomycota/génétique , Résistance à la maladie/génétique , Variation génétique , Interactions hôte-pathogène/génétique , Séquences répétées dispersées , Virulence/génétique
16.
Phytopathology ; 107(11): 1372-1380, 2017 11.
Article de Anglais | MEDLINE | ID: mdl-28589757

RÉSUMÉ

CI13227 is a U.S. winter wheat line with adult-plant slow-rusting resistance that has been the subject of several studies on the characteristics and components of slow rusting. Previous genetic studies used different populations and approaches and came to different conclusions about the genetic basis of resistance in CI13227. To clarify the situation, a new doubled-haploid (DH) population of CI13227 × Lakin was produced and a linkage map was constructed using 5,570 single-nucleotide polymorphism (SNP) markers derived from wheat 90K SNP assays and 84 simple sequence repeat markers. Three quantitative trait loci (QTL) were identified for three slow-rusting traits on chromosome arms 2DS, 7AL, and 7BL from CI13227. A fourth QTL mapped on chromosome 3BS was from Lakin. The QTL on 2DS, designated QLr.hwwg-2DS, explained 11.2 to 25.6% of the phenotypic variation. It was found in the same position as a slow-rusting QTL in the CI13227 × Suwon 92 population in a previous study and, thus, verified the 2DS QTL. The QTL on chromosome 7BL explained 8.1 and 19.3% of the phenotypic variation and is likely to be Lr68. The other two QTL showed a minor effect on some of the traits evaluated in a single experiment. Flanking SNP closely linked to all QTL were converted to Kompetitive allele-specific polymerase chain reaction markers that can be used in marker-assisted selection to transfer these QTL into adapted wheat cultivars.


Sujet(s)
Basidiomycota/physiologie , Maladies des plantes/microbiologie , Locus de caractère quantitatif , Triticum/génétique , Triticum/microbiologie , Cartographie chromosomique , Chromosomes de plante/génétique , Liaison génétique , Marqueurs génétiques , Prédisposition génétique à une maladie , Haploïdie
17.
BMC Genomics ; 18(1): 291, 2017 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-28403814

RÉSUMÉ

BACKGROUND: Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). RESULTS: The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. CONCLUSIONS: Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen's ability to infect the host.


Sujet(s)
Basidiomycota/génétique , Analyse de profil d'expression de gènes/méthodes , Protéines végétales/génétique , Analyse de séquence d'ADN/méthodes , Analyse de séquence d'ARN/méthodes , Triticum/génétique , Séquence nucléotidique , Basidiomycota/classification , Basidiomycota/isolement et purification , Séquence conservée , Évolution moléculaire , Régulation de l'expression des gènes végétaux , Réseaux de régulation génique , Gènes fongiques , Interactions hôte-pathogène , Maladies des plantes/génétique , Maladies des plantes/microbiologie , Feuilles de plante/génétique , Feuilles de plante/microbiologie , Tiges de plante/génétique , Tiges de plante/microbiologie , Triticum/microbiologie
18.
Plant Dis ; 101(12): 1974-1979, 2017 Dec.
Article de Anglais | MEDLINE | ID: mdl-30677381

RÉSUMÉ

Leaf rust, caused by Puccinia triticina, is an important fungal disease of wheat (Triticum aestivum L.) and causes significant yield losses worldwide. To determine quantitative trait loci (QTLs) responsible for leaf rust resistance, a recombinant inbred line (RIL) population developed from a cross of Ning7840 × Clark was evaluated for leaf rust severity, and was genotyped for single nucleotide polymorphisms (SNPs) using 9K Illumina chips, and with simple sequence repeat (SSR) markers. Two major QTLs on chromosome arms 7DS and 3BS, and two minor QTLs on chromosomes 5AS and 6AS showed a significant effect on leaf rust severity. The 7DS QTL from Ning7840 and the 3BS QTL from Clark explained, respectively, about 35% and 18% of the phenotypic variation for leaf rust resistance. The QTL on 7DS was confirmed to be Lr34. The QTL on 3BS, QLr.hwwg-3B.1, was associated with adult plant resistance and was provisionally identified as Lr74. QLr.hwwg-5AS and QLr.hwwg-6AS from Ning7840 and Clark, respectively, may correspond to previously described QTLs. Lr34, QLr.hwwg-3BS.1, and QLr.hwwg-6AS had an additive effect on leaf rust severity. RILs with all three favorable alleles showed the highest resistance to leaf rust and the RILs with none of them showed the lowest resistance.


Sujet(s)
Résistance à la maladie , Locus de caractère quantitatif , Triticum , Cartographie chromosomique , Résistance à la maladie/génétique , Maladies des plantes/génétique , Triticum/génétique , Triticum/microbiologie
19.
Theor Appl Genet ; 129(2): 345-55, 2016 Feb.
Article de Anglais | MEDLINE | ID: mdl-26602233

RÉSUMÉ

KEY MESSAGE: The wheat ortholog of the rice gene OsXA21 against bacterial leaf blight showed resistance to multiple pests in bread wheat but different interacting proteins. ABSTRACT: A quantitative trait locus QYr.osu-5A on the long arm of chromosome 5A in bread wheat (Triticum aestivum L., 2n = 6x = 42; AABBDD) was previously reported to confer consistent resistance in adult plants to predominant stripe rust races, but the gene causing the quantitative trait locus (QTL) is not known. Single-nucleotide polymorphism (SNP) markers were used to saturate the QTL region. Comparative and syntenic regions between wheat and rice (Oryza sativa) were applied to identify candidate genes for QYr.osu-5A. TaXA21-A1, which is referred to as a wheat ortholog of OsXA21-like gene on chromosome 9 in rice, was mapped under the peak of the QYr.osu-5A. TaXA21-A1 not only explained the phenotypic variation in reaction to different stripe rust races but also showed significant effects on resistance to powdery mildew and Hessian fly biotype BP. The natural allelic variation resulted in the alternations of four amino acids in deduced TaXA21-A1 proteins. The interacting proteins of TaXA21-A1 were different from those identified by OsXA21 on rice chromosome 11 against bacterial leaf blight. TaXA21-A1 confers unique resistance against multiple pests in wheat but might not have common protein interactors or thus overlapping functions with OsXA21 in rice. XA21 function has diverged during evolution of cereal crops. The molecular marker developed for TaXA21-A1 would accelerate its application of the candidate gene at the QYr.osu-5A locus in wheat breeding programs.


Sujet(s)
Résistance à la maladie/génétique , Maladies des plantes/génétique , Locus de caractère quantitatif , Triticum/génétique , Séquence d'acides aminés , Animaux , Bactéries , Basidiomycota , Marche sur chromosome , Chromosomes de plante , Produits agricoles/génétique , Diptera , Gènes de plante , Marqueurs génétiques , Variation génétique , Données de séquences moléculaires , Oryza/génétique , Polymorphisme de nucléotide simple , Similitude de séquences d'acides aminés
20.
G3 (Bethesda) ; 5(12): 2547-53, 2015 Nov 03.
Article de Anglais | MEDLINE | ID: mdl-26530417

RÉSUMÉ

The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based, high-resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for association mapping and genomics-assisted breeding is limited by a large proportion of missing data per marker. For species with a reference genomic sequence, markers can be ordered on the physical map. However, in the absence of reference marker order, the use and imputation of GBS markers is challenging. Here, we demonstrate how the population sequencing (POPSEQ) approach can be used to provide marker context for GBS in wheat. The utility of a POPSEQ-based genetic map as a reference map to create genetically ordered markers on a chromosome for hexaploid wheat was validated by constructing an independent de novo linkage map of GBS markers from a Synthetic W7984 × Opata M85 recombinant inbred line (SynOpRIL) population. The results indicated that there is strong agreement between the independent de novo linkage map and the POPSEQ mapping approach in mapping and ordering GBS markers for hexaploid wheat. After ordering, a large number of GBS markers were imputed, thus providing a high-quality reference map that can be used for QTL mapping for different traits. The POPSEQ-based reference map and whole-genome sequence assemblies are valuable resources that can be used to order GBS markers and enable the application of highly accurate imputation methods to leverage the application GBS markers in wheat.


Sujet(s)
Marqueurs génétiques , Génome végétal , Génomique , Génotype , Séquençage nucléotidique à haut débit , Polyploïdie , Triticum/génétique , Biologie informatique/méthodes , Liaison génétique , Étude d'association pangénomique , Génomique/méthodes , Polymorphisme de nucléotide simple
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...