Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pathogens ; 10(12)2021 Dec 20.
Article de Anglais | MEDLINE | ID: mdl-34959601

RÉSUMÉ

Identifying correlates of protection (COPs) for vaccines against lethal human (Hu) pathogens, such as Francisella tularensis (Ft), is problematic, as clinical trials are currently untenable and the relevance of various animal models can be controversial. Previously, Hu trials with the live vaccine strain (LVS) demonstrated ~80% vaccine efficacy against low dose (~50 CFU) challenge; however, protection deteriorated with higher challenge doses (~2000 CFU of SchuS4) and no COPs were established. Here, we describe our efforts to develop clinically relevant, humoral COPs applicable to high-dose, aerosol challenge with S4. First, our serosurvey of LVS-vaccinated Hu and animals revealed that rabbits (Rbs), but not rodents, recapitulate the Hu O-Ag dependent Ab response to Ft. Next, we assayed Rbs immunized with distinct S4-based vaccine candidates (S4ΔclpB, S4ΔguaBA, and S4ΔaroD) and found that, across multiple vaccines, the %O-Ag dep Ab trended with vaccine efficacy. Among S4ΔguaBA-vaccinated Rbs, the %O-Ag dep Ab in pre-challenge plasma was significantly higher in survivors than in non-survivors; a cut-off of >70% O-Ag dep Ab predicted survival with high sensitivity and specificity. Finally, we found this COP in 80% of LVS-vaccinated Hu plasma samples as expected for a vaccine with 80% Hu efficacy. Collectively, the %O-Ag dep Ab response is a bona fide COP for S4ΔguaBA-vaccinated Rb and holds significant promise for guiding vaccine trials with higher animals.

2.
Appl Environ Microbiol ; 85(17)2019 09 01.
Article de Anglais | MEDLINE | ID: mdl-31253680

RÉSUMÉ

Experimental infection of animals with aerosols containing pathogenic agents is essential for an understanding of the natural history and pathogenesis of infectious disease as well as evaluation of potential treatments. We evaluated whether the Aeroneb nebulizer, a vibrating mesh nebulizer, would serve as an alternative to the Collison nebulizer, the "gold standard" for generating infectious bioaerosols. While the Collison possesses desirable properties that have contributed to its longevity in infectious disease aerobiology, concerns have lingered about the liquid volume and concentration of the infectious agent required to cause disease and the damage that jet nebulization causes to the agent. Fluorescein salt was added to the nebulizer contents to assess pathogen loss during aerosolization. Relative to fluorescein salt, loss of influenza virus during aerosolization was worse with the Collison than with the Aeroneb. Four other viruses also had superior aerosol performance with the Aeroneb. The Aeroneb did not improve the aerosol performance for a vegetative bacterium, Francisella tularensis Environmental parameters collected during the aerosol challenges indicated that the Aeroneb generated a higher relative humidity in exposure chambers while not affecting other environmental parameters. The aerosol mass median aerodynamic diameter (MMAD) was generally larger and more disperse for aerosols generated by the Aeroneb than what is seen with the Collison, but ≥80% of particles were within the range that would reach the lower respiratory tract and alveolar regions. The improved aerosol performance and generated particle size range suggest that for viral pathogens, the Aeroneb is a suitable alternative to the Collison three-jet nebulizer for use in experimental infection of animals.IMPORTANCE Respiratory infection by pathogens via aerosol remains a major concern for both natural disease transmission as well as intentional release of biological weapons. Critical to understanding the disease course and pathogenesis of inhaled pathogens are studies in animal models conducted under tightly controlled experimental settings, including the inhaled dose. The route of administration, particle size, and dose can affect disease progression and outcome. Damage to or loss of pathogens during aerosolization could increase the dose required to cause disease and could stimulate innate immune responses, altering outcome. Aerosol generators that reduce pathogen loss would be ideal. This study compares two aerosol generators to determine which is superior for animal studies. Aerosol research methods and equipment need to be well characterized to optimize the development of animal models for respiratory pathogens, including bioterrorism agents. This information will be critical for pivotal efficacy studies in animals to evaluate potential vaccines or treatments against these agents.


Sujet(s)
Aérosols/analyse , Techniques microbiologiques/méthodes , Nébuliseurs et vaporisateurs , Techniques microbiologiques/instrumentation , Taille de particule
3.
Infect Immun ; 87(8)2019 08.
Article de Anglais | MEDLINE | ID: mdl-31085702

RÉSUMÉ

Inhalation of Francisella tularensis causes pneumonic tularemia in humans, a severe disease with a 30 to 60% mortality rate. The reproducible delivery of aerosolized virulent bacteria in relevant animal models is essential for evaluating medical countermeasures. Here we developed optimized protocols for infecting New Zealand White (NZW) rabbits with aerosols containing F. tularensis We evaluated the relative humidity, aerosol exposure technique, and bacterial culture conditions to optimize the spray factor (SF), a central metric of aerosolization. This optimization reduced both inter- and intraday variability and was applicable to multiple isolates of F. tularensis Further improvements in the accuracy and precision of the inhaled pathogen dose were achieved through enhanced correlation of the bacterial culture optical density and the number of CFU. Plethysmograph data collected during exposures found that respiratory function varied considerably between rabbits, was not a function of weight, and did not improve with acclimation to the system. Live vaccine strain (LVS)-vaccinated rabbits were challenged via aerosol with human-virulent F. tularensis SCHU S4 that had been cultivated in either Mueller-Hinton broth (MHB) or brain heart infusion (BHI) broth. LVS-vaccinated animals challenged with SCHU S4 that had been cultivated in MHB experienced short febrile periods (median, 3.2 days), limited weight loss (<5%), and longer median survival times (∼18 days) that were significantly different from those for unvaccinated controls. In contrast, LVS-vaccinated rabbits challenged with SCHU S4 that had been cultivated in BHI experienced longer febrile periods (median, 5.5 days) and greater weight loss (>10%) than the unvaccinated controls and median survival times that were not significantly different from those for the unvaccinated controls. These studies highlight the importance of careful characterization and optimization of protocols for aerosol challenge with pathogenic agents.


Sujet(s)
Modèles animaux de maladie humaine , Tularémie/étiologie , Aérosols , Animaux , Vaccins antibactériens/immunologie , Depsipeptides , Femelle , Francisella tularensis/immunologie , Exposition par inhalation , Mâle , Taille de particule , Lapins , Reproductibilité des résultats , Tularémie/mortalité , Tularémie/physiopathologie , Vaccination
4.
PLoS One ; 13(10): e0205928, 2018.
Article de Anglais | MEDLINE | ID: mdl-30346998

RÉSUMÉ

Tularemia, also known as rabbit fever, is a severe zoonotic disease in humans caused by the gram-negative bacterium Francisella tularensis (Ft). While there have been a number of attempts to develop a vaccine for Ft, few candidates have advanced beyond experiments in inbred mice. We report here that a prime-boost strategy with aerosol delivery of recombinant live attenuated candidate Ft S4ΔaroD offers significant protection (83% survival) in an outbred animal model, New Zealand White rabbits, against aerosol challenge with 248 cfu (11 LD50) of virulent type A Ft SCHU S4. Surviving rabbits given two doses of the attenuated strains by aerosol did not exhibit substantial post-challenge fevers, changes in erythrocyte sedimentation rate or in complete blood counts. At a higher challenge dose (3,186 cfu; 139 LD50), protection was still good with 66% of S4ΔaroD-vaccinated rabbits surviving while 50% of S4ΔguaBA vaccinated rabbits also survived challenge. Pre-challenge plasma IgG titers against Ft SCHU S4 corresponded with survival time after challenge. Western blot analysis found that plasma antibody shifted from predominantly targeting Ft O-antigen after the prime vaccination to other antigens after the boost. These results demonstrate the superior protection conferred by a live attenuated derivative of virulent F. tularensis, particularly when given in an aerosol prime-boost regimen.


Sujet(s)
Aérosols/usage thérapeutique , Vaccins antibactériens/immunologie , Francisella tularensis/pathogénicité , Rappel de vaccin , Tularémie/immunologie , Tularémie/prévention et contrôle , Vaccination , Animaux , Lignées animales non consanguines , Anticorps antibactériens/sang , Sédimentation du sang , Relation dose-réponse (immunologie) , Immunoglobuline G/sang , Lapins , Analyse de survie , Tularémie/sang , Tularémie/microbiologie , Virulence , Perte de poids
5.
J Immunol ; 198(4): 1616-1626, 2017 02 15.
Article de Anglais | MEDLINE | ID: mdl-28062701

RÉSUMÉ

Human infections with highly pathogenic avian influenza A (H5N1) virus are frequently fatal but the mechanisms of disease remain ill-defined. H5N1 infection is associated with intense production of proinflammatory cytokines, but whether this cytokine storm is the main cause of fatality or is a consequence of extensive virus replication that itself drives disease remains controversial. Conventional intratracheal inoculation of a liquid suspension of H5N1 influenza virus in nonhuman primates likely results in efficient clearance of virus within the upper respiratory tract and rarely produces severe disease. We reasoned that small particle aerosols of virus would penetrate the lower respiratory tract and blanket alveoli where target cells reside. We show that inhalation of aerosolized H5N1 influenza virus in cynomolgus macaques results in fulminant pneumonia that rapidly progresses to acute respiratory distress syndrome with a fatal outcome reminiscent of human disease. Molecular imaging revealed intense lung inflammation coincident with massive increases in proinflammatory proteins and IFN-α in distal airways. Aerosolized H5N1 exposure decimated alveolar macrophages, which were widely infected and caused marked influx of interstitial macrophages and neutrophils. Extensive infection of alveolar epithelial cells caused apoptosis and leakage of albumin into airways, reflecting loss of epithelial barrier function. These data establish inhalation of aerosolized virus as a critical source of exposure for fatal human infection and reveal that direct viral effects in alveoli mediate H5N1 disease. This new nonhuman primate model will advance vaccine and therapeutic approaches to prevent and treat human disease caused by highly pathogenic avian influenza viruses.


Sujet(s)
Sous-type H5N1 du virus de la grippe A/physiologie , Infections à Orthomyxoviridae/virologie , Pneumopathie virale/virologie , Alvéoles pulmonaires/virologie , /virologie , Réplication virale , Aérosols , Pneumocytes/immunologie , Pneumocytes/anatomopathologie , Pneumocytes/virologie , Animaux , Cellules cultivées , Cytokines/biosynthèse , Cytokines/immunologie , Modèles animaux de maladie humaine , Immunité innée/immunologie , Sous-type H5N1 du virus de la grippe A/immunologie , Sous-type H5N1 du virus de la grippe A/pathogénicité , Poumon/immunologie , Poumon/virologie , Macaca fascicularis , Macrophages alvéolaires/immunologie , Macrophages alvéolaires/anatomopathologie , Macrophages alvéolaires/virologie , Infections à Orthomyxoviridae/immunologie , Infections à Orthomyxoviridae/physiopathologie , Pneumopathie virale/immunologie , /immunologie , /physiopathologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...