Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Hepatology ; 59(5): 2010-21, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24122846

RÉSUMÉ

UNLABELLED: Met, the transmembrane tyrosine kinase receptor for hepatocyte growth factor (HGF), is known to function as a potent antiapoptotic mediator in normal and neoplastic cells. Herein we report that the intracellular cytoplasmic tail of Met has evolved to harbor a tandem pair of caspase-3 cleavage sites, which bait, trap, and disable the active site of caspase-3, thereby blocking the execution of apoptosis. We call this caspase-3 cleavage motif the Death Defying Domain (DDD). This site consists of the following sequence: DNAD-DEVD-T (where the hyphens denote caspase cleavage sites). Through functional and mechanistic studies, we show that upon DDD cleavage by caspase-3 the resulting DEVD-T peptide acts as a competitive inhibitor and entraps the active site of caspase-3 akin to DEVD-CHO, which is a potent, synthetic inhibitor of caspase-3 activity. By gain- and loss-of-function studies using restoration of DDD expression in DDD-deficient hepatocytic cells, we found that both caspase-3 sites in DDD are necessary for inhibition of caspase-3 and promotion of cell survival. Employing mutagenesis studies, we show that DDD could operate independently of Met's enzymatic activity as determined by using kinase-dead human Met mutant constructs. Studies of both human liver cancer tissues and cell lines uncovered that DDD cleavage and entrapment of caspase-3 by DDD occur in vivo, further proving that this site has physiological and pathophysiological relevance. CONCLUSION: Met can directly inhibit caspase-3 by way of a novel mechanism and promote hepatocyte survival. The results presented here will further our understanding of the mechanisms that control not only normal tissue homeostasis but also abnormal tissue growth such as cancer and degenerative diseases in which apoptotic caspases are at play.


Sujet(s)
Apoptose , Caspase-3/composition chimique , Hépatocytes/physiologie , Protéines proto-oncogènes c-met/physiologie , Séquence d'acides aminés , Animaux , Sites de fixation , Caspase-3/physiologie , Inhibiteurs des caspases/pharmacologie , Cytoprotection , Humains , Souris , Données de séquences moléculaires , Oligopeptides/pharmacologie , Structure tertiaire des protéines , Protéines proto-oncogènes c-met/composition chimique
2.
Clin Proteomics ; 2(1-2): 91-101, 2006 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-20200596

RÉSUMÉ

Recent studies have evaluated proper acquisition and storage procedures for the use of serum or plasma for mass spectrometry (MS)-based proteomics. The present study examines the proteome stability of human cerebrospinal fluid (CSF) over time at 23°C (room temperature) and 4°C using surface-enhanced laser desorption/ionization time-of-flight MS. Data analysis revealed that statistically significant differences in protein profiles are apparent within 4 h at 23°C and between 6 and 8 h at 4°C. Inclusion of protease and phosphatase inhibitor cocktails into the CSF samples failed to significantly reduce proteome alterations over time. We conclude that MS-based proteomic analysis of CSF requires careful assessment of sample collection procedures for rapid and optimal sample acquisition and storage.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE