Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Neuro Oncol ; 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39211987

RÉSUMÉ

BACKGROUND: Postoperative recurrence risk for pediatric low-grade gliomas (pLGGs) is challenging to predict by conventional clinical, radiographic, and genomic factors. We investigated if deep learning of MRI tumor features could improve postoperative pLGG risk stratification. METHODS: We used pre-trained deep learning (DL) tool designed for pLGG segmentation to extract pLGG imaging features from preoperative T2-weighted MRI from patients who underwent surgery (DL-MRI features). Patients were pooled from two institutions: Dana Farber/Boston Children's Hospital (DF/BCH) and the Children's Brain Tumor Network (CBTN). We trained three DL logistic hazard models to predict postoperative event-free survival (EFS) probabilities with 1) clinical features, 2) DL-MRI features, and 3) multimodal (clinical and DL-MRI features). We evaluated the models with a time-dependent Concordance Index (Ctd) and risk group stratification with Kaplan Meier plots and log-rank tests. We developed an automated pipeline integrating pLGG segmentation and EFS prediction with the best model. RESULTS: Of the 396 patients analyzed (median follow-up: 85 months, range: 1.5-329 months), 214 (54%) underwent gross total resection and 110 (28%) recurred. The multimodal model improved EFS prediction compared to the DL-MRI and clinical models (Ctd: 0.85 (95% CI: 0.81-0.93), 0.79 (95% CI: 0.70-0.88), and 0.72 (95% CI: 0.57-0.77), respectively). The multimodal model improved risk-group stratification (3-year EFS for predicted high-risk: 31% versus low-risk: 92%, p<0.0001). CONCLUSIONS: DL extracts imaging features that can inform postoperative recurrence prediction for pLGG. Multimodal DL improves postoperative risk stratification for pLGG and may guide postoperative decision-making. Larger, multicenter training data may be needed to improve model generalizability.

2.
Radiol Artif Intell ; 6(4): e230254, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38984985

RÉSUMÉ

Purpose To develop, externally test, and evaluate clinical acceptability of a deep learning pediatric brain tumor segmentation model using stepwise transfer learning. Materials and Methods In this retrospective study, the authors leveraged two T2-weighted MRI datasets (May 2001 through December 2015) from a national brain tumor consortium (n = 184; median age, 7 years [range, 1-23 years]; 94 male patients) and a pediatric cancer center (n = 100; median age, 8 years [range, 1-19 years]; 47 male patients) to develop and evaluate deep learning neural networks for pediatric low-grade glioma segmentation using a stepwise transfer learning approach to maximize performance in a limited data scenario. The best model was externally tested on an independent test set and subjected to randomized blinded evaluation by three clinicians, wherein they assessed clinical acceptability of expert- and artificial intelligence (AI)-generated segmentations via 10-point Likert scales and Turing tests. Results The best AI model used in-domain stepwise transfer learning (median Dice score coefficient, 0.88 [IQR, 0.72-0.91] vs 0.812 [IQR, 0.56-0.89] for baseline model; P = .049). With external testing, the AI model yielded excellent accuracy using reference standards from three clinical experts (median Dice similarity coefficients: expert 1, 0.83 [IQR, 0.75-0.90]; expert 2, 0.81 [IQR, 0.70-0.89]; expert 3, 0.81 [IQR, 0.68-0.88]; mean accuracy, 0.82). For clinical benchmarking (n = 100 scans), experts rated AI-based segmentations higher on average compared with other experts (median Likert score, 9 [IQR, 7-9] vs 7 [IQR 7-9]) and rated more AI segmentations as clinically acceptable (80.2% vs 65.4%). Experts correctly predicted the origin of AI segmentations in an average of 26.0% of cases. Conclusion Stepwise transfer learning enabled expert-level automated pediatric brain tumor autosegmentation and volumetric measurement with a high level of clinical acceptability. Keywords: Stepwise Transfer Learning, Pediatric Brain Tumors, MRI Segmentation, Deep Learning Supplemental material is available for this article. © RSNA, 2024.


Sujet(s)
Tumeurs du cerveau , Apprentissage profond , Imagerie par résonance magnétique , Humains , Enfant , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/anatomopathologie , Imagerie par résonance magnétique/méthodes , Mâle , Adolescent , Enfant d'âge préscolaire , Études rétrospectives , Femelle , Nourrisson , Jeune adulte , Gliome/imagerie diagnostique , Gliome/anatomopathologie , Interprétation d'images assistée par ordinateur/méthodes
3.
Radiol Artif Intell ; 6(3): e230333, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38446044

RÉSUMÉ

Purpose To develop and externally test a scan-to-prediction deep learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pediatric low-grade glioma. Materials and Methods This retrospective study included two pediatric low-grade glioma datasets with linked genomic and diagnostic T2-weighted MRI data of patients: Dana-Farber/Boston Children's Hospital (development dataset, n = 214 [113 (52.8%) male; 104 (48.6%) BRAF wild type, 60 (28.0%) BRAF fusion, and 50 (23.4%) BRAF V600E]) and the Children's Brain Tumor Network (external testing, n = 112 [55 (49.1%) male; 35 (31.2%) BRAF wild type, 60 (53.6%) BRAF fusion, and 17 (15.2%) BRAF V600E]). A deep learning pipeline was developed to classify BRAF mutational status (BRAF wild type vs BRAF fusion vs BRAF V600E) via a two-stage process: (a) three-dimensional tumor segmentation and extraction of axial tumor images and (b) section-wise, deep learning-based classification of mutational status. Knowledge-transfer and self-supervised approaches were investigated to prevent model overfitting, with a primary end point of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, a novel metric, center of mass distance, was developed to quantify the model attention around the tumor. Results A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest classification performance with an AUC of 0.82 (95% CI: 0.72, 0.91), 0.87 (95% CI: 0.61, 0.97), and 0.85 (95% CI: 0.66, 0.95) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively, on internal testing. On external testing, the pipeline yielded an AUC of 0.72 (95% CI: 0.64, 0.86), 0.78 (95% CI: 0.61, 0.89), and 0.72 (95% CI: 0.64, 0.88) for BRAF wild type, BRAF fusion, and BRAF V600E, respectively. Conclusion Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pediatric low-grade glioma mutational status prediction in a limited data scenario. Keywords: Pediatrics, MRI, CNS, Brain/Brain Stem, Oncology, Feature Detection, Diagnosis, Supervised Learning, Transfer Learning, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2024.


Sujet(s)
Tumeurs du cerveau , Gliome , Humains , Enfant , Mâle , Femelle , Tumeurs du cerveau/imagerie diagnostique , Études rétrospectives , Protéines proto-oncogènes B-raf/génétique , Gliome/diagnostic , Apprentissage machine
4.
medRxiv ; 2023 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-37609311

RÉSUMÉ

Purpose: To develop and externally validate a scan-to-prediction deep-learning pipeline for noninvasive, MRI-based BRAF mutational status classification for pLGG. Materials and Methods: We conducted a retrospective study of two pLGG datasets with linked genomic and diagnostic T2-weighted MRI of patients: BCH (development dataset, n=214 [60 (28%) BRAF fusion, 50 (23%) BRAF V600E, 104 (49%) wild-type), and Child Brain Tumor Network (CBTN) (external validation, n=112 [60 (53%) BRAF-Fusion, 17 (15%) BRAF-V600E, 35 (32%) wild-type]). We developed a deep learning pipeline to classify BRAF mutational status (V600E vs. fusion vs. wildtype) via a two-stage process: 1) 3D tumor segmentation and extraction of axial tumor images, and 2) slice-wise, deep learning-based classification of mutational status. We investigated knowledge-transfer and self-supervised approaches to prevent model overfitting with a primary endpoint of the area under the receiver operating characteristic curve (AUC). To enhance model interpretability, we developed a novel metric, COMDist, that quantifies the accuracy of model attention around the tumor. Results: A combination of transfer learning from a pretrained medical imaging-specific network and self-supervised label cross-training (TransferX) coupled with consensus logic yielded the highest macro-average AUC (0.82 [95% CI: 0.70-0.90]) and accuracy (77%) on internal validation, with an AUC improvement of +17.7% and a COMDist improvement of +6.4% versus training from scratch. On external validation, the TransferX model yielded AUC (0.73 [95% CI 0.68-0.88]) and accuracy (75%). Conclusion: Transfer learning and self-supervised cross-training improved classification performance and generalizability for noninvasive pLGG mutational status prediction in a limited data scenario.

5.
medRxiv ; 2023 Sep 18.
Article de Anglais | MEDLINE | ID: mdl-37425854

RÉSUMÉ

Purpose: Artificial intelligence (AI)-automated tumor delineation for pediatric gliomas would enable real-time volumetric evaluation to support diagnosis, treatment response assessment, and clinical decision-making. Auto-segmentation algorithms for pediatric tumors are rare, due to limited data availability, and algorithms have yet to demonstrate clinical translation. Methods: We leveraged two datasets from a national brain tumor consortium (n=184) and a pediatric cancer center (n=100) to develop, externally validate, and clinically benchmark deep learning neural networks for pediatric low-grade glioma (pLGG) segmentation using a novel in-domain, stepwise transfer learning approach. The best model [via Dice similarity coefficient (DSC)] was externally validated and subject to randomized, blinded evaluation by three expert clinicians wherein clinicians assessed clinical acceptability of expert- and AI-generated segmentations via 10-point Likert scales and Turing tests. Results: The best AI model utilized in-domain, stepwise transfer learning (median DSC: 0.877 [IQR 0.715-0.914]) versus baseline model (median DSC 0.812 [IQR 0.559-0.888]; p<0.05). On external testing (n=60), the AI model yielded accuracy comparable to inter-expert agreement (median DSC: 0.834 [IQR 0.726-0.901] vs. 0.861 [IQR 0.795-0.905], p=0.13). On clinical benchmarking (n=100 scans, 300 segmentations from 3 experts), the experts rated the AI model higher on average compared to other experts (median Likert rating: 9 [IQR 7-9]) vs. 7 [IQR 7-9], p<0.05 for each). Additionally, the AI segmentations had significantly higher (p<0.05) overall acceptability compared to experts on average (80.2% vs. 65.4%). Experts correctly predicted the origins of AI segmentations in an average of 26.0% of cases. Conclusions: Stepwise transfer learning enabled expert-level, automated pediatric brain tumor auto-segmentation and volumetric measurement with a high level of clinical acceptability. This approach may enable development and translation of AI imaging segmentation algorithms in limited data scenarios.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE