Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Science ; 386(6718): 180-187, 2024 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-39388556

RÉSUMÉ

Optical investigations of nanometer distances between proteins, their subunits, or other biomolecules have been the exclusive prerogative of Förster resonance energy transfer (FRET) microscopy for decades. In this work, we show that MINFLUX fluorescence nanoscopy measures intramolecular distances down to 1 nanometer-and in planar projections down to 1 angstrom-directly, linearly, and with angstrom precision. Our method was validated by quantifying well-characterized 1- to 10-nanometer distances in polypeptides and proteins. Moreover, we visualized the orientations of immunoglobulin subunits, applied the method in human cells, and revealed specific configurations of a histidine kinase PAS domain dimer. Our results open the door for examining proximities and interactions by direct position measurements at the intramacromolecular scale.


Sujet(s)
Transfert d'énergie par résonance de fluorescence , Humains , Transfert d'énergie par résonance de fluorescence/méthodes , Microscopie de fluorescence/méthodes , Multimérisation de protéines , Histidine kinase/composition chimique , Domaines protéiques , Peptides/composition chimique , Sous-unités de protéines/composition chimique , Protéines/composition chimique
2.
Cell Rep ; 37(8): 110000, 2021 11 23.
Article de Anglais | MEDLINE | ID: mdl-34818548

RÉSUMÉ

In human cells, generally a single mitochondrial DNA (mtDNA) is compacted into a nucleoprotein complex denoted the nucleoid. Each cell contains hundreds of nucleoids, which tend to cluster into small groups. It is unknown whether all nucleoids are equally involved in mtDNA replication and transcription or whether distinct nucleoid subpopulations exist. Here, we use multi-color STED super-resolution microscopy to determine the activity of individual nucleoids in primary human cells. We demonstrate that only a minority of all nucleoids are active. Active nucleoids are physically larger and tend to be involved in both replication and transcription. Inactivity correlates with a high ratio of the mitochondrial transcription factor A (TFAM) to the mtDNA of the individual nucleoid, suggesting that TFAM-induced nucleoid compaction regulates nucleoid replication and transcription activity in vivo. We propose that the stable population of highly compacted inactive nucleoids represents a storage pool of mtDNAs with a lower mutational load.


Sujet(s)
Réplication de l'ADN/physiologie , ADN mitochondrial/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines mitochondriales/métabolisme , Facteurs de transcription/métabolisme , Lignée cellulaire , Empaquetage de l'ADN/physiologie , Réplication de l'ADN/génétique , ADN mitochondrial/génétique , Protéines de liaison à l'ADN/génétique , Fibroblastes , Humains , Microscopie/méthodes , Mitochondries/métabolisme , Protéines mitochondriales/génétique , Mutation , Nucléoprotéines/métabolisme , Facteurs de transcription/génétique
3.
EMBO J ; 39(14): e104105, 2020 07 15.
Article de Anglais | MEDLINE | ID: mdl-32567732

RÉSUMÉ

Mitochondrial function is critically dependent on the folding of the mitochondrial inner membrane into cristae; indeed, numerous human diseases are associated with aberrant crista morphologies. With the MICOS complex, OPA1 and the F1 Fo -ATP synthase, key players of cristae biogenesis have been identified, yet their interplay is poorly understood. Harnessing super-resolution light and 3D electron microscopy, we dissect the roles of these proteins in the formation of cristae in human mitochondria. We individually disrupted the genes of all seven MICOS subunits in human cells and re-expressed Mic10 or Mic60 in the respective knockout cell line. We demonstrate that assembly of the MICOS complex triggers remodeling of pre-existing unstructured cristae and de novo formation of crista junctions (CJs) on existing cristae. We show that the Mic60-subcomplex is sufficient for CJ formation, whereas the Mic10-subcomplex controls lamellar cristae biogenesis. OPA1 stabilizes tubular CJs and, along with the F1 Fo -ATP synthase, fine-tunes the positioning of the MICOS complex and CJs. We propose a new model of cristae formation, involving the coordinated remodeling of an unstructured crista precursor into multiple lamellar cristae.


Sujet(s)
Protéines membranaires/métabolisme , Membranes mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Complexes multiprotéiques/métabolisme , Cellules HeLa , Humains , Antigènes CD46/génétique , Antigènes CD46/métabolisme , Protéines membranaires/génétique , Protéines mitochondriales/génétique , Mitochondrial Proton-Translocating ATPases/génétique , Mitochondrial Proton-Translocating ATPases/métabolisme , Complexes multiprotéiques/génétique
4.
Annu Rev Biophys ; 49: 289-308, 2020 05 06.
Article de Anglais | MEDLINE | ID: mdl-32092283

RÉSUMÉ

Mitochondria are essential for eukaryotic life. These double-membrane organelles often form highly dynamic tubular networks interacting with many cellular structures. Their highly convoluted contiguous inner membrane compartmentalizes the organelle, which is crucial for mitochondrial function. Since the diameter of the mitochondrial tubules is generally close to the diffraction limit of light microscopy, it is often challenging, if not impossible, to visualize submitochondrial structures or protein distributions using conventional light microscopy. This renders super-resolution microscopy particularly valuable, and attractive, for studying mitochondria. Super-resolution microscopy encompasses a diverse set of approaches that extend resolution, as well as nanoscopy techniques that can even overcome the diffraction limit. In this review, we provide an overview of recent studies using super-resolution microscopy to investigate mitochondria, discuss the strengths and opportunities of the various methods in addressing specific questions in mitochondrial biology, and highlight potential future developments.


Sujet(s)
Microscopie/méthodes , Mitochondries/métabolisme , Humains , Nanotechnologie
5.
Biol Open ; 8(9)2019 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-31412999

RÉSUMÉ

The ESCRT pathway, comprising the in sequence acting ESCRT-0, -I, -II, -III and Vps4 complexes, conducts the abscission of membranes away from the cytosol. Whereas the components of the central ESCRT-III core complex have been thoroughly investigated, the function of the components of the associated two auxiliary ESCRT sub-complexes are not well-understood in metazoans, especially at the organismal level. We here present the developmental analysis of the Drosophila orthologs of the auxiliary ESCRTs Chmp5 and Ist1, DChmp5 and DIst1, which belong to the two auxiliary sub-complexes. While each single null mutant displayed mild defects in development, the Dist1 Dchmp5 double mutant displayed a severe defect, indicating that the two genes act synergistically, but in separate pathways. Moreover, the presented results indicate that the auxiliary ESCRTs provide robustness against cold during development of diverse poikilothermic organisms, probably by preventing the accumulation of the ESCRT-III core component Shrub on the endosomal membrane.

6.
PLoS Genet ; 15(6): e1008085, 2019 06.
Article de Anglais | MEDLINE | ID: mdl-31170154

RÉSUMÉ

Mitochondrial dynamics is an essential physiological process controlling mitochondrial content mixing and mobility to ensure proper function and localization of mitochondria at intracellular sites of high-energy demand. Intriguingly, for yet unknown reasons, severe impairment of mitochondrial fusion drastically affects mtDNA copy number. To decipher the link between mitochondrial dynamics and mtDNA maintenance, we studied mouse embryonic fibroblasts (MEFs) and mouse cardiomyocytes with disruption of mitochondrial fusion. Super-resolution microscopy revealed that loss of outer mitochondrial membrane (OMM) fusion, but not inner mitochondrial membrane (IMM) fusion, leads to nucleoid clustering. Remarkably, fluorescence in situ hybridization (FISH), bromouridine labeling in MEFs and assessment of mitochondrial transcription in tissue homogenates revealed that abolished OMM fusion does not affect transcription. Furthermore, the profound mtDNA depletion in mouse hearts lacking OMM fusion is not caused by defective integrity or increased mutagenesis of mtDNA, but instead we show that mitochondrial fusion is necessary to maintain the stoichiometry of the protein components of the mtDNA replisome. OMM fusion is necessary for proliferating MEFs to recover from mtDNA depletion and for the marked increase of mtDNA copy number during postnatal heart development. Our findings thus link OMM fusion to replication and distribution of mtDNA.


Sujet(s)
ADN mitochondrial/génétique , Mitochondries du myocarde/génétique , Dynamique mitochondriale/génétique , Protéines mitochondriales/génétique , Animaux , Variations de nombre de copies de segment d'ADN/génétique , Réplication de l'ADN/génétique , Fibroblastes , Humains , Hybridation fluorescente in situ , Fusion membranaire/génétique , Souris , Mitochondries du myocarde/métabolisme , Membranes mitochondriales/métabolisme , Mutagenèse , Myocytes cardiaques/métabolisme , Transcription génétique
7.
Proc Natl Acad Sci U S A ; 116(20): 9853-9858, 2019 05 14.
Article de Anglais | MEDLINE | ID: mdl-31028145

RÉSUMÉ

Mitochondria are tubular double-membrane organelles essential for eukaryotic life. They form extended networks and exhibit an intricate inner membrane architecture. The MICOS (mitochondrial contact site and cristae organizing system) complex, crucial for proper architecture of the mitochondrial inner membrane, is localized primarily at crista junctions. Harnessing superresolution fluorescence microscopy, we demonstrate that Mic60, a subunit of the MICOS complex, as well as several of its interaction partners are arranged into intricate patterns in human and yeast mitochondria, suggesting an ordered distribution of the crista junctions. We show that Mic60 forms clusters that are preferentially localized in the inner membrane at two opposing sides of the mitochondrial tubules so that they form extended opposing distribution bands. These Mic60 distribution bands can be twisted, resulting in a helical arrangement. Focused ion beam milling-scanning electron microscopy showed that in yeast the twisting of the opposing distribution bands is echoed by the folding of the inner membrane. We show that establishment of the Mic60 distribution bands is largely independent of the cristae morphology. We suggest that Mic60 is part of an extended multiprotein interaction network that scaffolds mitochondria.


Sujet(s)
Membranes mitochondriales/métabolisme , Protéines mitochondriales/métabolisme , Humains , Saccharomycetales/métabolisme
8.
EMBO J ; 35(4): 402-13, 2016 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-26783364

RÉSUMÉ

The Bcl-2 family proteins Bax and Bak are essential for the execution of many apoptotic programs. During apoptosis, Bax translocates to the mitochondria and mediates the permeabilization of the outer membrane, thereby facilitating the release of pro-apoptotic proteins. Yet the mechanistic details of the Bax-induced membrane permeabilization have so far remained elusive. Here, we demonstrate that activated Bax molecules, besides forming large and compact clusters, also assemble, potentially with other proteins including Bak, into ring-like structures in the mitochondrial outer membrane. STED nanoscopy indicates that the area enclosed by a Bax ring is devoid of mitochondrial outer membrane proteins such as Tom20, Tom22, and Sam50. This strongly supports the view that the Bax rings surround an opening required for mitochondrial outer membrane permeabilization (MOMP). Even though these Bax assemblies may be necessary for MOMP, we demonstrate that at least in Drp1 knockdown cells, these assemblies are not sufficient for full cytochrome c release. Together, our super-resolution data provide direct evidence in support of large Bax-delineated pores in the mitochondrial outer membrane as being crucial for Bax-mediated MOMP in cells.


Sujet(s)
Apoptose , Mitochondries/enzymologie , Membranes mitochondriales/métabolisme , Perforines/métabolisme , Multimérisation de protéines , Protéine Bax/métabolisme , Lignée cellulaire , Cytochromes c/métabolisme , Humains , Microscopie de fluorescence , Mitochondries/physiologie , Membranes mitochondriales/physiologie , Perméabilité
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE