Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
BMC Biol ; 21(1): 170, 2023 08 08.
Article de Anglais | MEDLINE | ID: mdl-37553620

RÉSUMÉ

BACKGROUND: Development of vertebrate embryos is characterized by early formation of the anterior tissues followed by the sequential extension of the axis at their posterior end to build the trunk and tail structures, first by the activity of the primitive streak and then of the tail bud. Embryological, molecular and genetic data indicate that head and trunk development are significantly different, suggesting that the transition into the trunk formation stage involves major changes in regulatory gene networks. RESULTS: We explored those regulatory changes by generating differential interaction networks and chromatin accessibility profiles from the posterior epiblast region of mouse embryos at embryonic day (E)7.5 and E8.5. We observed changes in various cell processes, including several signaling pathways, ubiquitination machinery, ion dynamics and metabolic processes involving lipids that could contribute to the functional switch in the progenitor region of the embryo. We further explored the functional impact of changes observed in Wnt signaling associated processes, revealing a switch in the functional relevance of Wnt molecule palmitoleoylation, essential during gastrulation but becoming differentially required for the control of axial extension and progenitor differentiation processes during trunk formation. We also found substantial changes in chromatin accessibility at the two developmental stages, mostly mapping to intergenic regions and presenting differential footprinting profiles to several key transcription factors, indicating a significant switch in the regulatory elements controlling head or trunk development. Those chromatin changes are largely independent of retinoic acid, despite the key role of this factor in the transition to trunk development. We also tested the functional relevance of potential enhancers identified in the accessibility assays that reproduced the expression profiles of genes involved in the transition. Deletion of these regions by genome editing had limited effect on the expression of those genes, suggesting the existence of redundant enhancers that guarantee robust expression patterns. CONCLUSIONS: This work provides a global view of the regulatory changes controlling the switch into the axial extension phase of vertebrate embryonic development. It also revealed mechanisms by which the cellular context influences the activity of regulatory factors, channeling them to implement one of several possible biological outputs.


Sujet(s)
Tête , Tronc , Transcriptome , Tronc/embryologie , Tête/embryologie , Animaux , Souris , Régulation de l'expression des gènes au cours du développement , Cartes d'interactions protéiques , Voie de signalisation Wnt , Chromatine/génétique , Chromatine/métabolisme , Feuillets embryonnaires/embryologie , Feuillets embryonnaires/métabolisme , Facteurs de transcription/métabolisme
2.
PLoS Comput Biol ; 19(2): e1010854, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-36821564

RÉSUMÉ

The structure of social networks strongly affects how different phenomena spread in human society, from the transmission of information to the propagation of contagious diseases. It is well-known that heterogeneous connectivity strongly favors spread, but a precise characterization of the redundancy present in social networks and its effect on the robustness of transmission is still lacking. This gap is addressed by the metric backbone, a weight- and connectivity-preserving subgraph that is sufficient to compute all shortest paths of weighted graphs. This subgraph is obtained via algebraically-principled axioms and does not require statistical sampling based on null-models. We show that the metric backbones of nine contact networks obtained from proximity sensors in a variety of social contexts are generally very small, 49% of the original graph for one and ranging from about 6% to 20% for the others. This reflects a surprising amount of redundancy and reveals that shortest paths on these networks are very robust to random attacks and failures. We also show that the metric backbone preserves the full distribution of shortest paths of the original contact networks-which must include the shortest inter- and intra-community distances that define any community structure-and is a primary subgraph for epidemic transmission based on pure diffusion processes. This suggests that the organization of social contact networks is based on large amounts of shortest-path redundancy which shapes epidemic spread in human populations. Thus, the metric backbone is an important subgraph with regard to epidemic spread, the robustness of social networks, and any communication dynamics that depend on complex network shortest paths.


Sujet(s)
Maladies transmissibles , Épidémies , Humains , Maladies transmissibles/épidémiologie , Réseautage social , Communication
3.
Epilepsy Behav ; 128: 108580, 2022 03.
Article de Anglais | MEDLINE | ID: mdl-35151186

RÉSUMÉ

Sudden Unexpected Death in Epilepsy (SUDEP) remains a leading cause of death in people with epilepsy. Despite the constant risk for patients and bereavement to family members, to date the physiological mechanisms of SUDEP remain unknown. Here we explore the potential to identify putative predictive signals of SUDEP from online digital behavioral data using text and sentiment analysis tools. Specifically, we analyze Facebook timelines of six patients with epilepsy deceased due to SUDEP, donated by surviving family members. We find preliminary evidence for behavioral changes detectable by text and sentiment analysis tools. Namely, in the months preceding their SUDEP event patient social media timelines show: i) increase in verbosity; ii) increased use of functional words; and iii) sentiment shifts as measured by different sentiment analysis tools. Combined, these results suggest that social media engagement, as well as its sentiment, may serve as possible early-warning signals for SUDEP in people with epilepsy. While the small sample of patient timelines analyzed in this study prevents generalization, our preliminary investigation demonstrates the potential of social media data as complementary data in larger studies of SUDEP and epilepsy.


Sujet(s)
Épilepsie , Médias sociaux , Mort subite et inexpliquée en épilepsie , Études de cohortes , Mort subite/étiologie , Mort subite/prévention et contrôle , Épilepsie/complications , Humains , Facteurs de risque
4.
Proc Natl Acad Sci U S A ; 118(12)2021 03 23.
Article de Anglais | MEDLINE | ID: mdl-33737396

RÉSUMÉ

The ability to map causal interactions underlying genetic control and cellular signaling has led to increasingly accurate models of the complex biochemical networks that regulate cellular function. These network models provide deep insights into the organization, dynamics, and function of biochemical systems: for example, by revealing genetic control pathways involved in disease. However, the traditional representation of biochemical networks as binary interaction graphs fails to accurately represent an important dynamical feature of these multivariate systems: some pathways propagate control signals much more effectively than do others. Such heterogeneity of interactions reflects canalization-the system is robust to dynamical interventions in redundant pathways but responsive to interventions in effective pathways. Here, we introduce the effective graph, a weighted graph that captures the nonlinear logical redundancy present in biochemical network regulation, signaling, and control. Using 78 experimentally validated models derived from systems biology, we demonstrate that 1) redundant pathways are prevalent in biological models of biochemical regulation, 2) the effective graph provides a probabilistic but precise characterization of multivariate dynamics in a causal graph form, and 3) the effective graph provides an accurate explanation of how dynamical perturbation and control signals, such as those induced by cancer drug therapies, propagate in biochemical pathways. Overall, our results indicate that the effective graph provides an enriched description of the structure and dynamics of networked multivariate causal interactions. We demonstrate that it improves explainability, prediction, and control of complex dynamical systems in general and biochemical regulation in particular.


Sujet(s)
Phénomènes biologiques , Modèles biologiques , Logiciel , Réseaux de régulation génique , Voies et réseaux métaboliques , Transduction du signal
5.
NPJ Digit Med ; 2: 74, 2019.
Article de Anglais | MEDLINE | ID: mdl-31341958

RÉSUMÉ

The occurrence of drug-drug-interactions (DDI) from multiple drug dispensations is a serious problem, both for individuals and health-care systems, since patients with complications due to DDI are likely to reenter the system at a costlier level. We present a large-scale longitudinal study (18 months) of the DDI phenomenon at the primary- and secondary-care level using electronic health records (EHR) from the city of Blumenau in Southern Brazil (pop. ≈340,000). We found that 181 distinct drug pairs known to interact were dispensed concomitantly to 12% of the patients in the city's public health-care system. Further, 4% of the patients were dispensed drug pairs that are likely to result in major adverse drug reactions (ADR)-with costs estimated to be much larger than previously reported in smaller studies. The large-scale analysis reveals that women have a 60% increased risk of DDI as compared to men; the increase becomes 90% when considering only DDI known to lead to major ADR. Furthermore, DDI risk increases substantially with age; patients aged 70-79 years have a 34% risk of DDI when they are dispensed two or more drugs concomitantly. Interestingly, a statistical null model demonstrates that age- and female-specific risks from increased polypharmacy fail by far to explain the observed DDI risks in those populations, suggesting unknown social or biological causes. We also provide a network visualization of drugs and demographic factors that characterize the DDI phenomenon and demonstrate that accurate DDI prediction can be included in health care and public-health management, to reduce DDI-related ADR and costs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE