Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
IEEE Trans Vis Comput Graph ; 30(1): 469-479, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37883262

RÉSUMÉ

Relational information between different types of entities is often modelled by a multilayer network (MLN) - a network with subnetworks represented by layers. The layers of an MLN can be arranged in different ways in a visual representation, however, the impact of the arrangement on the readability of the network is an open question. Therefore, we studied this impact for several commonly occurring tasks related to MLN analysis. Additionally, layer arrangements with a dimensionality beyond 2D, which are common in this scenario, motivate the use of stereoscopic displays. We ran a human subject study utilising a Virtual Reality headset to evaluate 2D, 2.5D, and 3D layer arrangements. The study employs six analysis tasks that cover the spectrum of an MLN task taxonomy, from path finding and pattern identification to comparisons between and across layers. We found no clear overall winner. However, we explore the task-to-arrangement space and derive empirical-based recommendations on the effective use of 2D, 2.5D, and 3D layer arrangements for MLNs.

2.
IEEE Trans Vis Comput Graph ; 30(4): 1984-1997, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38019636

RÉSUMÉ

Molecular docking is a key technique in various fields like structural biology, medicinal chemistry, and biotechnology. It is widely used for virtual screening during drug discovery, computer-assisted drug design, and protein engineering. A general molecular docking process consists of the target and ligand selection, their preparation, and the docking process itself, followed by the evaluation of the results. However, the most commonly used docking software provides no or very basic evaluation possibilities. Scripting and external molecular viewers are often used, which are not designed for an efficient analysis of docking results. Therefore, we developed InVADo, a comprehensive interactive visual analysis tool for large docking data. It consists of multiple linked 2D and 3D views. It filters and spatially clusters the data, and enriches it with post-docking analysis results of protein-ligand interactions and functional groups, to enable well-founded decision-making. In an exemplary case study, domain experts confirmed that InVADo facilitates and accelerates the analysis workflow. They rated it as a convenient, comprehensive, and feature-rich tool, especially useful for virtual screening.


Sujet(s)
Infographie , Logiciel , Simulation de docking moléculaire , Ligands , Découverte de médicament/méthodes
3.
J Med Internet Res ; 24(10): e38041, 2022 10 24.
Article de Anglais | MEDLINE | ID: mdl-36279164

RÉSUMÉ

BACKGROUND: Visual analysis and data delivery in the form of visualizations are of great importance in health care, as such forms of presentation can reduce errors and improve care and can also help provide new insights into long-term disease progression. Information visualization and visual analytics also address the complexity of long-term, time-oriented patient data by reducing inherent complexity and facilitating a focus on underlying and hidden patterns. OBJECTIVE: This review aims to provide an overview of visualization techniques for time-oriented data in health care, supporting the comparison of patients. We systematically collected literature and report on the visualization techniques supporting the comparison of time-based data sets of single patients with those of multiple patients or their cohorts and summarized the use of these techniques. METHODS: This scoping review used the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) checklist. After all collected articles were screened by 16 reviewers according to the criteria, 6 reviewers extracted the set of variables under investigation. The characteristics of these variables were based on existing taxonomies or identified through open coding. RESULTS: Of the 249 screened articles, we identified 22 (8.8%) that fit all criteria and reviewed them in depth. We collected and synthesized findings from these articles for medical aspects such as medical context, medical objective, and medical data type, as well as for the core investigated aspects of visualization techniques, interaction techniques, and supported tasks. The extracted articles were published between 2003 and 2019 and were mostly situated in clinical research. These systems used a wide range of visualization techniques, most frequently showing changes over time. Timelines and temporal line charts occurred 8 times each, followed by histograms with 7 occurrences and scatterplots with 5 occurrences. We report on the findings quantitatively through visual summarization, as well as qualitatively. CONCLUSIONS: The articles under review in general mitigated complexity through visualization and supported diverse medical objectives. We identified 3 distinct patient entities: single patients, multiple patients, and cohorts. Cohorts were typically visualized in condensed form, either through prior data aggregation or through visual summarization, whereas visualization of individual patients often contained finer details. All the systems provided mechanisms for viewing and comparing patient data. However, explicitly comparing a single patient with multiple patients or a cohort was supported only by a few systems. These systems mainly use basic visualization techniques, with some using novel visualizations tailored to a specific task. Overall, we found the visual comparison of measurements between single and multiple patients or cohorts to be underdeveloped, and we argue for further research in a systematic review, as well as the usefulness of a design space.


Sujet(s)
Liste de contrôle , Prestations des soins de santé , Humains , Publications
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE