Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
1.
Mol Cancer Res ; 17(7): 1468-1479, 2019 07.
Article de Anglais | MEDLINE | ID: mdl-31015254

RÉSUMÉ

PR domain-containing 14 (Prdm14) is a pluripotency regulator central to embryonic stem cell identity and primordial germ cell specification. Genomic regions containing PRDM14 are often amplified leading to misexpression in human cancer. Prdm14 expression in mouse hematopoietic stem cells (HSC) leads to progenitor cell expansion prior to the development of T-cell acute lymphoblastic leukemia (T-ALL), consistent with PRDM14's role in cancer initiation. Here, we demonstrate mechanistic insight into PRDM14-driven leukemias in vivo. Mass spectrometry revealed novel PRDM14-protein interactions including histone H1, RNA-binding proteins, and the master hematopoietic regulator CBFA2T3. In mouse leukemic cells, CBFA2T3 and PRDM14 associate independently of the related ETO family member CBFA2T2, PRDM14's primary protein partner in pluripotent cells. CBFA2T3 plays crucial roles in HSC self-renewal and lineage commitment, and participates in oncogenic translocations in acute myeloid leukemia. These results suggest a model whereby PRDM14 recruits CBFA2T3 to DNA, leading to gene misregulation causing progenitor cell expansion and lineage perturbations preceding T-ALL development. Strikingly, Prdm14-induced T-ALL does not occur in mice deficient for Cbfa2t3, demonstrating that Cbfa2t3 is required for leukemogenesis. Moreover, T-ALL develops in Cbfa2t3 heterozygotes with a significantly longer latency, suggesting that PRDM14-associated T-ALL is sensitive to Cbfa2t3 levels. Our study highlights how an oncogenic protein uses a native protein in progenitor cells to initiate leukemia, providing insight into PRDM14-driven oncogenesis in other cell types. IMPLICATIONS: The pluripotency regulator PRDM14 requires the master hematopoietic regulator CBFA2T3 to initiate leukemia in progenitor cells, demonstrating an oncogenic role for CBFA2T3 and providing an avenue for targeting cancer-initiating cells.


Sujet(s)
Protéines de liaison à l'ADN/génétique , Cellules souches hématopoïétiques/métabolisme , Cellules souches tumorales/anatomopathologie , Leucémie-lymphome lymphoblastique à précurseurs T/génétique , Protéines de liaison à l'ARN/génétique , Protéines de répression/génétique , Facteurs de transcription/génétique , Animaux , Méthylation de l'ADN/génétique , Modèles animaux de maladie humaine , Cellules souches hématopoïétiques/anatomopathologie , Humains , Souris , Cellules souches tumorales/métabolisme , Cellules souches pluripotentes/métabolisme , Cellules souches pluripotentes/anatomopathologie , Leucémie-lymphome lymphoblastique à précurseurs T/anatomopathologie
2.
J Biol Chem ; 292(8): 3389-3399, 2017 02 24.
Article de Anglais | MEDLINE | ID: mdl-28082674

RÉSUMÉ

The packaging of genomic DNA into nucleosomes creates a barrier to transcription that can be relieved through ATP-dependent chromatin remodeling via complexes such as the switch-sucrose non-fermentable (SWI-SNF) chromatin remodeling complex. The SWI-SNF complex remodels chromatin via conformational or positional changes of nucleosomes, thereby altering the access of transcriptional machinery to target genes. The SWI-SNF complex has limited ability to bind to sequence-specific elements, and, therefore, its recruitment to target loci is believed to require interaction with DNA-associated transcription factors. The Cdx family of homeodomain transcript ion factors (Cdx1, Cdx2, and Cdx4) are essential for a number of developmental programs in the mouse. Cdx1 and Cdx2 also regulate intestinal homeostasis throughout life. Although a number of Cdx target genes have been identified, the basis by which Cdx members impact their transcription is poorly understood. We have found that Cdx members interact with the SWI-SNF complex and make direct contact with Brg1, a catalytic member of SWI-SNF. Both Cdx2 and Brg1 co-occupy a number of Cdx target genes, and both factors are necessary for transcriptional regulation of such targets. Finally, Cdx2 and Brg1 occupancy occurs coincident with chromatin remodeling at some of these loci. Taken together, our findings suggest that Cdx transcription factors regulate target gene expression, in part, through recruitment of Brg1-associated SWI-SNF chromatin remodeling activity.


Sujet(s)
Facteurs de transcription CDX2/métabolisme , Assemblage et désassemblage de la chromatine , Protéines chromosomiques nonhistones/métabolisme , Helicase/métabolisme , Protéines nucléaires/métabolisme , Facteurs de transcription/métabolisme , Animaux , Régulation de l'expression des gènes , Cellules HEK293 , Humains , Souris , Cartes d'interactions protéiques
3.
Dev Biol ; 422(2): 115-124, 2017 02 15.
Article de Anglais | MEDLINE | ID: mdl-28065741

RÉSUMÉ

The Cdx transcription factors play essential roles in primitive hematopoiesis in the zebrafish where they exert their effects, in part, through regulation of hox genes. Defects in hematopoiesis have also been reported in Cdx mutant murine embryonic stem cell models, however, to date no mouse model reflecting the zebrafish Cdx mutant hematopoietic phenotype has been described. This is likely due, in part, to functional redundancy among Cdx members and the early lethality of Cdx2 null mutants. To circumvent these limitations, we used Cre-mediated conditional deletion to assess the impact of concomitant loss of Cdx1 and Cdx2 on murine primitive hematopoiesis. We found that Cdx1/Cdx2 double mutants exhibited defects in primitive hematopoiesis and yolk sac vasculature concomitant with reduced expression of several genes encoding hematopoietic transcription factors including Scl/Tal1. Chromatin immunoprecipitation analysis revealed that Scl was occupied by Cdx2 in vivo, and Cdx mutant hematopoietic yolk sac differentiation defects could be rescued by expression of exogenous Scl. These findings demonstrate critical roles for Cdx members in murine primitive hematopoiesis upstream of Scl.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/biosynthèse , Facteurs de transcription CDX2/génétique , Hématopoïèse/génétique , Protéines à homéodomaine/génétique , Néovascularisation physiologique/génétique , Protéines proto-oncogènes/biosynthèse , Vésicule vitelline/vascularisation , Animaux , Différenciation cellulaire/génétique , Immunoprécipitation de la chromatine , Développement embryonnaire/génétique , Cellules souches embryonnaires/cytologie , Régulation de l'expression des gènes au cours du développement , Cellules souches hématopoïétiques/cytologie , Souris , Souris knockout , Protéine-1 de la lleucémie lymphoïde aiguë à cellules T , Vésicule vitelline/embryologie
4.
Biol Open ; 5(5): 645-53, 2016 May 15.
Article de Anglais | MEDLINE | ID: mdl-27106930

RÉSUMÉ

PRDM14 is an epigenetic regulator known for maintaining embryonic stem cell identity and resetting potency in primordial germ cells. However, hematopoietic expression of Prdm14 at supraphysiological levels results in fully penetrant and rapid-onset T-cell acute lymphoblastic leukemia (T-ALL) in the mouse. Here, we show that PRDM14-induced T-ALLs are driven by NOTCH1, a frequently mutated driver of human T-ALL. Notch1 is activated in this murine model via RAG-dependent promoter deletions and subsequent production of truncated, ligand-independent protein from downstream regions of the Notch1 locus. These T-ALLs also have focal changes in H3K4me3 deposition at the Notch1 locus and global increases in both H3K4me1 and H3K4me3. Using a PRDM14-FLAG mouse model, we show that PRDM14 binds within an intron of Notch1 prior to leukemia development. Our data support the idea that PRDM14 binding promotes a chromatin state that allows access of the RAG recombinase complex to cryptic RAG signal sequences embedded at the Notch1 locus. Indeed, breeding into a RAG recombination-deficient background abrogates T-ALL development and prevents Notch1 deletions, while allowing for transient hematopoietic stem cell (HSC)-like pre-leukemia cell expansion. Together, our data suggest that PRDM14 expands a progenitor cell population while promoting a permissive epigenetic state for the creation of driver mutations (here, in Notch1), enabling cancer development through the misappropriation of endogenous cellular DNA recombination machinery.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...