Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 118
Filtrer
1.
Sci Total Environ ; 945: 173971, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38876342

RÉSUMÉ

Pesticides are widely used in agriculture where they do not only reach their targets but also distribute to other environmental compartments and negatively affect non-target organisms. To prospectively assess their environmental risk, several tools and models using pesticide persistence (DT50) and leaching potential (groundwater ubiquity score (GUS), EXPOSIT) have been developed. Here, we simultaneously quantified 18 pesticides in soil and drainage water during a conventionally grown potato culture at field scale with high temporal resolution and compared our findings with predictions of the above models. Overall dissipations of all freshly applied compounds in soil were in line with published DT50 field values and their occurrences in drainage water were generally consistent with GUS and EXPOSIT models, respectively. In contrast, soil concentrations of the legacy pesticide atrazine and one of its transformation products (atrazine-2-hydroxy) were constant during the entire sampling campaign. Moreover, during peak discharge atrazine concentrations in drainage water were diluted whereas those of freshly applied pesticides were maximal. This difference demonstrates that the applied risk assessment tools were capable of predicting environmental concentrations and dissipation of pesticides at the short and medium time scale of a few half-lives after application, but fell short of capturing long-term trace residues.


Sujet(s)
Agriculture , Surveillance de l'environnement , Pesticides , Polluants du sol , Sol , Solanum tuberosum , Polluants chimiques de l'eau , Pesticides/analyse , Polluants du sol/analyse , Surveillance de l'environnement/méthodes , Polluants chimiques de l'eau/analyse , Sol/composition chimique , Agriculture/méthodes , Modèles chimiques , Appréciation des risques , Atrazine/analyse
2.
Chimia (Aarau) ; 78(4): 209-214, 2024 Apr 24.
Article de Anglais | MEDLINE | ID: mdl-38676611

RÉSUMÉ

Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic'sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic's characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research.


Sujet(s)
Antibactériens , Plantes , Sol , Antibactériens/métabolisme , Sol/composition chimique , Plantes/métabolisme , Plantes/composition chimique , Polluants du sol/métabolisme , Polluants du sol/analyse , Transport biologique , Racines de plante/métabolisme , Racines de plante/composition chimique , Feuilles de plante/métabolisme , Feuilles de plante/composition chimique
3.
Environ Sci Pollut Res Int ; 31(9): 14333-14345, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38329663

RÉSUMÉ

We here report of a conference about "Pesticides in Soil, Groundwater and Food in Latin America as part of One Health" that took place at the "IV Seminario Internacional de Sanidad Agropecuaria (SISA)" in Varadero, Cuba, 8-12 May 2023. Researchers of Latin America (Argentina, Brazil, Chile, Costa Rica, Colombia, Cuba, Mexico) and Switzerland (workshop initiator) held presentations about occurrence and effects of pesticides on the environment, human health, the replacement of highly hazardous pesticides (HHP) by agroecological alternatives and the agri-food value chain. In a subsequent round table discussion, the presenters identified deficits, needs, interests and opportunities. According to them, the lack of awareness of pesticide use affects the health and safety of workers applying the chemicals. Despite Latin America representing the main agricultural area in the world with a very intense pesticide use, monitoring data of pesticides in soil, surface and groundwaters, food, as well as in humans are missing. Risks of pesticides to humans should be assessed so that authorities can withdraw or limit within "short time" the access to corresponding formulations on the market. Also, communication is not state of the art and should be improved as, e.g. the teaching of workers and farmers, how to correctly use and apply pesticides or the briefing of decision makers. Pollinators suffer from multiple stressors not the least due to pesticides, and alternatives are badly needed. On the technical side, the different analytical methods to determine residues of active ingredients and transformation products in matrices of concern should be harmonized among laboratories.Seven future actions and goals were identified to overcome the above deficits. Next steps after the publishing of this conference report are to harmonize and complete the information status of the presenters by exchanging the results/data already present. Therefore, a platform of interaction to address issues described above and to enhance collaboration shall be created. Samples of different matrices shall be exchanged to harmonize the chemical analysis and establish interlaboratory comparisons. Such activities might be facilitated by joining international associations or organizations, where researchers can offer their expertise, or by forming a new pesticide network for Central and South America that could present tailored projects to national and international organizations and funding agencies.


Sujet(s)
Nappe phréatique , Une seule santé , Pesticides , Humains , Amérique latine , Pesticides/analyse , Sol , Brésil
4.
Chimia (Aarau) ; 77(11): 750-757, 2023 Nov 29.
Article de Anglais | MEDLINE | ID: mdl-38047842

RÉSUMÉ

Synthetic pesticides are widely applied in modern agriculture, where they are used against diseases, pests, and weeds to secure crop yield and quality. However, their intensive application has led to widespread contamination of the environment, including soils. Due to their inherent toxicity, they might pose a risk to soil health by causing harm to non-target organisms and disrupting ecosystem services in both agricultural and other exposed soils. Following the Swiss National Action Plan on the reduction of pesticide risks, Agroscope has conducted several soil monitoring studies that are briefly presented here. All of them resort to different multi-residue trace analytical approaches to simultaneously quantify up to about 150 modern pesticides by either accelerated solvent, or Quick, Easy, Cheap, Efficient, Rugged, Safe (QuEChERS) extraction, followed by separation and detection with liquid chromatography-triple quadrupole mass spectrometry. While partly still in progress, our investigations led to the following major findings this far: Multiple pesticides are commonly present in soils, with individual concentrations in agricultural soils often reaching up to a few tens of µg/kg. Pesticide occurrence and concentrations in agricultural soils primarily depend on land use, land use history and cultivated crops. Pesticides can prevail much longer than predicted by their half-lives, and were found in soils even decades after conversion from conventional to organic farming. Corresponding residual fractions can be in the order of a few percent of the originally applied amounts. We further found negative associations of pesticide residues with the abundance of beneficial soil life, underpinning their potential risk to the fertility of agricultural soils. Traces of pesticides are also detected in soils to which they were never applied, indicating contamination, e.g., via spray drift or atmospheric deposition. These results confirm the general notion of both scientists and legislators that prospective risk assessments (RA; as executed during registration and use authorization) should be confirmed and adjusted by retrospective RA (e.g., by environmental monitoring studies of currently used compounds) to jointly lead to an overall reduced environmental risk of pesticides.


Sujet(s)
Pesticides , Sol , Suisse , Écosystème , Études prospectives , Études rétrospectives , Agriculture
5.
Anal Bioanal Chem ; 415(24): 6009-6025, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37550544

RÉSUMÉ

A multi-residue trace analytical method is presented to accurately quantify 146 currently used pesticides in (agricultural) soils with varying soil properties. Pesticides were extracted using an optimized quick, easy, cheap, effective, rugged, and safe (QuEChERS) approach and chemical analysis was carried out by liquid chromatography coupled to tandem mass spectrometry (triple quadrupole). Quantification was based on matrix-matched internal standards calibration, using 95 isotopically labeled analyte analogues. In contrast to the common approach of method validation using soils freshly spiked with analytes shortly before the extraction, our method is additionally validated via an in-house prepared partly aged soil, which contains all target pesticides and via agricultural field soils with native pesticide residues. The developed method is highly sensitive (median method limit of quantification: 0.2 ng/g), precise (e.g., median intra-day and inter-day method precision both ~ 4% based on field soils), and true ((i) quantified pesticide concentrations of the partly aged soil remained stable during 6 months, were close to the initially spiked nominal concentration of 10 ng/g, and thus can be used to review trueness in the future; (ii) median freshly spiked relative recovery: 103%; and (iii) participation in a ring trial: median z-scores close to one (good to satisfactory result)). Its application to selected Swiss (agricultural) soils revealed the presence of in total 77 different pesticides with sum concentrations up to 500 ng/g. The method is now in use for routine soil monitoring as part of the Swiss Action Plan for Risk Reduction and Sustainable Use of Plant Protection Products.

6.
Environ Pollut ; 331(Pt 2): 121892, 2023 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-37247768

RÉSUMÉ

The application of synthetic pesticides to agricultural fields for the protection of crops leads to the formation of residues in soils. While the short-term behavior of pesticide residues in soils after an application is generally known from laboratory and field studies required for authorization (prospective risk assessments), there is still a lack of in-situ observations that address their long-term fate. Long-term soil monitoring programs, with comprehensive site-specific records of pesticide application data, constitute an invaluable, complementary, retrospective exposure assessment tool to address this gap. Considering the pesticide applications over the past 10-15 years, this study assessed the occurrence of pesticides in agricultural soils of Switzerland and put their presence or absence, as well as their concentrations, in the context of their previous application. The results showed that pesticides could also be detected at sites without a connection to previous applications and that small residual mass fractions of pesticides, even of some non-persistent compounds, were found in soils, years or decades after their last application. This finding points to an environmental issue that may not be adequately captured in prospective risk assessment and calls attention to the need for comprehensive long-term recording and monitoring as a complementary retrospective exposure assessment.


Sujet(s)
Résidus de pesticides , Pesticides , Polluants du sol , Résidus de pesticides/analyse , Sol/composition chimique , Fermes , Études prospectives , Études rétrospectives , Surveillance de l'environnement/méthodes , Agriculture/méthodes , Pesticides/analyse , Polluants du sol/analyse
7.
Sci Total Environ ; 878: 162995, 2023 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-36948305

RÉSUMÉ

Pesticides constitute an integral part of today's agriculture. Their widespread use leads to ubiquitous contamination of the environment, including soils. Soils are a precious resource providing vital functions to society - thus, it is of utmost importance to thoroughly assess the risk posed by widespread pesticide contamination. The exposure of non-target organisms to pesticides in soils is challenging to quantify since only a fraction of the total pesticide concentration is bioavailable. Here we measured and compared the bioavailable and total concentrations of three fungicides - boscalid, azoxystrobin, and epoxiconazole - and evaluated which concentration best predicts effects on nine microbial markers. The experiments were performed in three different soils at five time points over two months employing nearly 900 microcosms with a model plant. The total and bioavailable concentrations of azoxystrobin and boscalid decreased steadily during the trial to levels of 25 % and 8 % of the original concentration, respectively, while the concentration of epoxiconazole in soil nearly remained unchanged. The bioavailable fraction generally showed a slightly faster and more pronounced decline. The microbial markers varied in their sensitivity to the three fungicides. Specific microbial markers, such as arbuscular mycorrhizal fungi, and bacterial and archaeal ammonia oxidizers, were most sensitive to each of the fungicide treatments, making them suitable indicators for pesticide effects. Even though the responses were predominantly negative, they were also transient, and the impact was no longer evident after two months. Finally, the bioavailable fraction did not better predict the relationships between exposure and effect than the total concentration. This study demonstrates that key microbial groups are temporarily susceptible to a single fungicide application, pointing to the risk that repeated use of pesticides may disrupt vital soil functions such as nutrient cycling in agroecosystems.


Sujet(s)
Fongicides industriels , Mycorhizes , Pesticides , Polluants du sol , Sol , Microbiologie du sol , Pesticides/analyse , Mycorhizes/composition chimique
9.
Environ Sci Technol ; 57(6): 2333-2340, 2023 02 14.
Article de Anglais | MEDLINE | ID: mdl-36723500

RÉSUMÉ

Phytotoxins (PTs) are bioactive secondary metabolites produced by plants. More recently, they have been recognized as important aquatic micropollutants. Despite that, only a few PTs have been detected and reported in terrestrial and aquatic environments, while their source and leaching pathways remain largely unclear. Herein, we established a novel approach named source-supported suspect screening (4S) to discover PTs in different environments, investigate their environmental occurrences, identify their sources, and initiate discussions on their leaching mechanisms. The 4S-approach was demonstrated on a five-month Lupinus angustifolius L. (L. angustifolius) crop field experiment, where plant, topsoil, drainage water, and surface water were sampled and analyzed. As a result, 72 PTs (flavonoids and alkaloids) were identified at high confidence, with 10 PTs fully confirmed. Fifty-three PTs detected in soil or water were linked to L. angustifolius, among which 26 PTs were coherently detected in all three environmental compartments. The occurrence and abundance of PTs in terrestrial soil and aquatic environments were influenced by the plant growth stage and precipitation. Soil served as an intermedium when PTs leached from L. angustifolius to the drainage water, while the degree of retardation and eventual occurrence in the aquatic environment depended on both PTs and soil physico-chemical properties.


Sujet(s)
Alcaloïdes , Lupinus , Lupinus/composition chimique , Sol , Eau
11.
Environ Sci Technol ; 56(19): 13686-13695, 2022 10 04.
Article de Anglais | MEDLINE | ID: mdl-36099238

RÉSUMÉ

The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.


Sujet(s)
Pesticides , Sol , Agriculture , Prairie , Pesticides/analyse , Sol/composition chimique , Légumes
13.
Environ Pollut ; 309: 119599, 2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-35690223

RÉSUMÉ

Pyrogenic carbonaceous materials (PCM) are increasingly used in a wide variety of consumer products, ranging from medicine, personal care products, food and feed additives, as well as drinking water purification. Depending on the product category and corresponding legislation, several terms are commonly used for PCM, such as Carbo activatus, C. medicinalis, vegetable carbon (E153), (activated) charcoal, (activated) biochar, or activated carbon. All PCM contain polycyclic aromatic hydrocarbons (PAHs) co-produced during pyrolysis. However, the actual PAH-content of PCM may range from negligibly low to alarmingly high depending on pyrolysis conditions and, if any, subsequent activation. Because of their health risk, PAHs need to be determined in many such PCM containing products, and concentrations are regulated by respective legally binding documents. Several such documents even specify the analytical method to be used. In this paper, we first argue that based on existing literature, currently legally binding methods to quantify PAHs in such products might not be fit for purpose. Secondly, we exemplarily determined PAH concentrations with a method previously optimized for biochar in a selection of 15 PCM or PCM-containing commercial products, illustrating that concentrations up to 30 mg kg-1 can be found. Consumer safety is of concern according to Swiss norms for drinking water and EU regulations for food additives for some of the investigated samples. In fact, some products would not have been allowed to be put on the market, if regulations with fit for purpose analytical methods existed. As PAHs were detected in considerable concentrations when extracted with toluene for 36 h, the authors suggest a corresponding adaption of existing methods and harmonization of the legislation.


Sujet(s)
Hydrocarbures aromatiques polycycliques , Charbon de bois/composition chimique , Hydrocarbures aromatiques polycycliques/analyse , Légumes
14.
Environ Monit Assess ; 194(6): 441, 2022 May 20.
Article de Anglais | MEDLINE | ID: mdl-35596091

RÉSUMÉ

Cuba is a country with considerable potential for economic growth, and special efforts are made to increase the agricultural output. As food production depends on the quality of soils, heavy metal concentrations were measured in 39 soils in the province of Mayabeque, Cuba, and interpreted in light of anthropogenic activities and pedogenic conditions (soil type and properties). With median concentrations of 1.8 Cd, 60.3 Cr, 48.1 Cu, 36.2 Ni, 16.7 Pb, 55.0 Zn, and 0.1 mg/kg Hg, soils of Mayabeque were mostly below Cuban quality reference values (QRV) representing benchmarks of quality standards but no official threshold values. Only Cd concentrations were in many cases above the QRV of 0.6 mg/kg and some Cu concentrations above the one of 83 mg/kg. While Cd, Cr, and Ni concentrations were rather pedogenically driven, Cu, Pb, Zn, and Hg contents were rather anthropogenically influenced. When evaluated statistically, Cd and Cr showed most times a significant influence of both sources. In contrast, Ni and Zn could not be significantly related with the origins investigated in this study. Hence, the allocation of heavy metal concentrations to pedogenic or anthropogenic contamination or pollution sources is tentative and needs further investigations. Nevertheless, the present data adds information on soil heavy metal concentrations in the Caribbean region, serves as reference before further industrial development, and sets the ground for adaptation of the QRV for Cd and possibly future national environmental standards.


Sujet(s)
Mercure , Métaux lourds , Polluants du sol , Cadmium , Chine , Cuba , Surveillance de l'environnement , Plomb , Métaux lourds/analyse , Appréciation des risques , Sol , Polluants du sol/analyse
15.
Sci Total Environ ; 835: 155485, 2022 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-35472349

RÉSUMÉ

The efficient retention of microplastic particles (MP) during wastewater treatment results in their accumulation in the sewage sludge. Thus, sewage sludge represents a key matrix for understanding MP flows between engineered and natural systems. Building on previous reports, we present a sample preparation protocol optimized for digested sewage sludge. The key steps include acid digestion supported by Fenton reagents, enzymatic digestion, and density separation using sodium polytungstate (density of 1.9 gcm-3). We use colored polyethylene (PE) spheres as surrogate standards to assess sample specific recoveries in terms of number and size, based on visible light (vis) microscopy and focal plane array - micro-Fourier transform - infrared (FPA-µ-FT-IR) imaging. The FT-IR spectra of common MP were identical before and after the digestion procedures and morphological changes were observed for polylactide fibers only. Average recovery rates for PE spheres, polypropylene fibers and polyethylene terephthalate fragments extracted from spiked digested sewage sludge and determined using (automated) vis microscopy ranged from 80% to 100%. Similar recovery rates of around 80% were also obtained for PE spheres based on FPA-µ-FT-IR measurements. The median diameters of red and blue PE spheres in dry state and recovered from spiked deionized water and from extracts of spiked digested sewage sludge determined using vis microscopy ranged between 46 µm and 67 µm. These diameters were similar to 54 µm and 61 µm obtained from the FPA-µ-FT-IR measurements of the corresponding deionized water samples and digested sludge extracts and in line with data from the producer (53 µm-63 µm). Using our digestion protocol in combination with surrogate standards, we measured MP number concentrations of around 10,000 #/g in dried, digested sewage sludge, in agreement with recent results from other studies.


Sujet(s)
Microplastiques , Eaux d'égout , Matières plastiques/analyse , Polyéthylène , Spectroscopie infrarouge à transformée de Fourier , Eau
16.
Sci Total Environ ; 834: 155283, 2022 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-35439507

RÉSUMÉ

Phytotoxins are produced in plants including agricultural crops. Lupins and other plants of the Fabaceae family produce toxic alkaloids. These alkaloids have been studied in food and feed, however, the environmental fate of alkaloids produced by cultivated lupins is largely unknown. Therefore, we conducted an agricultural field experiment to investigate the occurrence of indole and quinolizidine alkaloids in lupin plant tissues, soil, soil pore water and in drainage water. During the field experiment, alkaloids were regularly quantified (median concentrations) in lupin (13-8.7 × 103 ng/g dry weight (dw)), and topsoils at depth 0-5 cm (0.1-10 ng/g dw), and depth 15-30 cm (0.2-8.5 ng/g dw), soil pore water (0.2-7.5 ng/L) and drainage water samples (0.4-18 ng/L). Lupanine was the dominant alkaloid in all collected samples. Cumulative amounts of alkaloids emitted via drainage water were around 0.1-11 mg/ha for individual alkaloids over one growing season. The total cumulative amount of alkaloid in drainage water was 14 mg/ha, which is a very small amount compared to the mass of alkaloid in the lupin biomass (11 kg/ha) and soil (0.02 kg/ha). Nearly half of the alkaloids were exported in the drainage water during high flow events, indicating that alkaloids transport preferentially via macropores. These findings indicate that drainage from lupin cultivated areas contribute to surface water contamination. The environmental and ecotoxicological relevance of alkaloids as newly identified aquatic micropollutants in areas with agricultural activities have yet to be assessed.


Sujet(s)
Alcaloïdes , Lupinus , Quinolizidines , Indoles , Sol , Eau
17.
Environ Sci Technol ; 56(8): 4702-4710, 2022 04 19.
Article de Anglais | MEDLINE | ID: mdl-35353522

RÉSUMÉ

Permanently charged and ionizable organic compounds (IOC) are a large and diverse group of compounds belonging to many contaminant classes, including pharmaceuticals, pesticides, industrial chemicals, and natural toxins. Sorption and mobility of IOCs are distinctively different from those of neutral compounds. Due to electrostatic interactions with natural sorbents, existing concepts for describing neutral organic contaminant sorption, and by extension mobility, are inadequate for IOC. Predictive models developed for neutral compounds are based on octanol-water partitioning of compounds (Kow) and organic-carbon content of soil/sediment, which is used to normalize sorption measurements (KOC). We revisit those concepts and their translation to IOC (Dow and DOC) and discuss compound and soil properties determining sorption of IOC under water saturated conditions. Highlighting possible complementary and/or alternative approaches to better assess IOC mobility, we discuss implications on their regulation and risk assessment. The development of better models for IOC mobility needs consistent and reliable sorption measurements at well-defined chemical conditions in natural porewater, better IOC-, as well as sorbent characterization. Such models should be complemented by monitoring data from the natural environment. The state of knowledge presented here may guide urgently needed future investigations in this field for researchers, engineers, and regulators.


Sujet(s)
Composés chimiques organiques , Polluants du sol , Adsorption , Carbone/composition chimique , Composés chimiques organiques/composition chimique , Sol , Polluants du sol/analyse , Eau/composition chimique
19.
Sci Total Environ ; 798: 149128, 2021 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-34325139

RÉSUMÉ

Toxic plant secondary metabolites (PSMs), so-called phytotoxins, occur widely in plant species. Many of these phytotoxins have similar mobility, persistence, and toxicity properties in the environment as anthropogenic micropollutants, which increasingly contaminate surface waters. Although recent case studies have shown the aquatic relevance of phytotoxins, the overall exposure remains unknown. Therefore, we performed a detailed occurrence analysis covering 134 phytotoxins from 27 PSM classes. Water samples from seven small Swiss streams with catchment areas from 1.7 to 23 km2 and varying land uses were gathered over several months to investigate seasonal impacts. They were complemented with samples from different biogeographical regions to cover variations in vegetation. A broad SPE-LC-HRMS/MS method was applied with limits of detection below 5 ng/L for over 80% of the 134 included phytotoxins. In total, we confirmed 39 phytotoxins belonging to 13 PSM classes, which corresponds to almost 30% of all included phytotoxins. Several alkaloids were regularly detected in the low ng/L-range, with average detection frequencies of 21%. This is consistent with the previously estimated persistence and mobility properties that indicated a high contamination potential. Coumarins were previously predicted to be unstable, however, detection frequencies were around 89%, and maximal concentrations up to 90 ng/L were measured for fraxetin produced by various trees. Overall, rainy weather conditions at full vegetation led to the highest total phytotoxin concentrations, which might potentially be most critical for aquatic organisms.


Sujet(s)
Alcaloïdes , Polluants chimiques de l'eau , Chromatographie en phase liquide , Spectrométrie de masse , Rivières , Polluants chimiques de l'eau/analyse
20.
Environ Sci Technol ; 55(8): 4762-4771, 2021 04 20.
Article de Anglais | MEDLINE | ID: mdl-33754714

RÉSUMÉ

Natural toxins are multifunctional, often ionizable organic compounds increasingly detected in the environment. Surprisingly little is known about their interactions with soil organic carbon, although sorption largely controls transport, bioavailability, and dissipation. For a set of 117 natural toxins from 36 compound classes the pH-dependent organic carbon-water distribution coefficient (Doc) was quantified using a soil column chromatography approach under changing conditions with regards to pH, ionic strength, and the major inorganic cation in solution. Natural toxins could be assigned to groups with either hydrophobic partitioning or specific interactions (complexation reactions, cation exchange) as dominating sorption mechanisms. The complex interplay of interactions in the sorption of natural toxins was equally influenced by sorbate, sorbent, and solution specific characteristics. High variability in sorption was particularly observed in the presence of Ca2+ resulting in Doc being enhanced by a factor of 10 when the pH was increased from 4.5 to 6. Sorbates following this trend contain either functional groups able to form ternary complexes via Ca2+ or aromatic moieties adjacent to protonated N presumably stabilizing cation exchange reactions. Although sorption was often stronger than predicted, investigated natural toxins were highly mobile under all considered conditions.


Sujet(s)
Polluants du sol , Sol , Adsorption , Carbone , Composés chimiques organiques , Polluants du sol/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...