Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cardiovasc Eng Technol ; 10(4): 628-637, 2019 12.
Article de Anglais | MEDLINE | ID: mdl-31650518

RÉSUMÉ

PURPOSE: Conventional methods of seeding decellularized heart valves for heart valve tissue engineering have led to inconsistent results in interstitial cellular repopulation, particularly of the distal valve leaflet, and notably distinct from documented re-endothelialization. The use of bioreactor conditioning mimicking physiologic parameters has been well explored but cellular infiltration remains challenging. Non-characteristic, non-physiologic conditioning parameters within a bioreactor, such as hypoxia and cyclic chamber pressure, may be used to increase the cellular infiltration leading to increased recellularization. METHODS: To investigate the effects of novel and perhaps non-intuitive bioreactor conditioning parameters, ovine aortic heart valves were seeded with mesenchymal stem cells and cultured in one of four environments: hypoxia and high cyclic pressures (120 mmHg), normoxia and high cyclic pressures, hypoxia and negative cyclic pressures (- 20 mmHg), and normoxia and negative cyclic pressures. Analysis included measurements of cellular density, cell phenotype, and biochemical concentrations. RESULTS: The results revealed that the bioreactor conditioning parameters influenced the degree of recellularization. Groups that implemented hypoxic conditioning exhibited increased cellular infiltration into the valve leaflet tissue compared to normoxic conditioning, while pressure conditioning did not have a significant effect of recellularization. Protein expression across all groups was similar, exhibiting a stem cell and valve interstitial cell phenotype. Biochemical analysis of the extracellular matrix was similar between all groups. CONCLUSION: These results suggest the use of non-physiologic bioreactor conditioning parameters can increase in vitro recellularization of tissue engineered heart valve leaflets. Particularly, hypoxic culture was found to increase the cellular infiltration. Therefore, bioreactor conditioning of tissue engineered constructs need not always mimic physiologic conditions, and it is worth investigating novel or uncharacteristic culture conditions as they may benefit aspects of tissue culture.


Sujet(s)
Valve aortique/physiologie , Bioprothèse , Bioréacteurs , Prothèse valvulaire cardiaque , Cellules souches mésenchymateuses/physiologie , Techniques de culture de tissus/instrumentation , Ingénierie tissulaire/instrumentation , Animaux , Valve aortique/cytologie , Hypoxie cellulaire , Cellules cultivées , Matrice extracellulaire/physiologie , Humains , Phénotype , Pression , Ovis aries
2.
Methods Mol Biol ; 1577: 25-33, 2018.
Article de Anglais | MEDLINE | ID: mdl-28786033

RÉSUMÉ

Scaffolds, both natural and synthetic, used in tissue engineering provide mechanical support to cells. Tissue decellularization has been used to provide natural extracellular matrix scaffolds for tissue engineering purposes. In this chapter we focus on describing the methodology used to decellularize Wharton's jelly matrix, the mucous connective tissue that surrounds umbilical cord vessels, to obtain decellularized Wharton's jelly matrix (DWJM); an extracellular matrix that can be used for tissue engineering purposes. We also, briefly, describe our experience with processing DWJM for cell seeding and recellularization.


Sujet(s)
Matrice extracellulaire/composition chimique , Ingénierie tissulaire/méthodes , Structures d'échafaudage tissulaires/composition chimique , Gelée de Wharton/composition chimique , Animaux , Adhérence cellulaire , Différenciation cellulaire , Lignée cellulaire , Lignée cellulaire tumorale , Humains , Cellules souches/cytologie , Cordon ombilical/cytologie , Gelée de Wharton/cytologie
3.
Acta Biomater ; 50: 249-258, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28069510

RÉSUMÉ

Decellularized heart valves have great potential as a stand-alone valve replacement or as a scaffold for tissue engineering heart valves. Before decellularized valves can be widely used clinically, regulatory standards require pre-clinical testing in an animal model, often sheep. Numerous decellularization protocols have been applied to both human and ovine valves; however, the ways in which a specific process may affect valves of these species differently have not been reported. In the current study, the comparative effects of decellularization were evaluated for human and ovine aortic valves by measuring mechanical and biochemical properties. Cell removal was equally effective for both species. The initial cell density of the ovine valve leaflets (2036±673cells/mm2) was almost triple the cell density of human leaflets (760±386cells/mm2; p<0.001). Interestingly, post-decellularization ovine leaflets exhibited significant increases in biaxial areal strain (p<0.001) and circumferential peak stretch (p<0.001); however, this effect was not observed in the human counterparts (p>0.10). This species-dependent difference in the effect of decellularization was likely due to the higher initial cellularity in ovine valves, as well as a significant decrease in collagen crosslinking following the decellularization of ovine leaflets that was not observed in the human leaflet. Decellularization also caused a significant decrease in the circumferential relaxation of ovine leaflets (p<0.05), but not human leaflets (p>0.30), which was credited to a greater reduction of glycosaminoglycans in the ovine tissue post-decellularization. These results indicate that an identical decellularization process can have differing species-specific effects on heart valves. STATEMENT OF SIGNIFICANCE: The decellularized heart valve offers potential as an improved heart valve substitute and as a scaffold for the tissue engineered heart valve; however, the consequences of processing must be fully characterized. To date, the effects of decellularization on donor valves from different species have not been evaluated in such a way that permits direct comparison between species. In this manuscript, we report species-dependent variation in the biochemical and biomechanical properties of human and ovine aortic heart valve leaflets following decellularization. This is of clinical significance, as current regulatory guidelines required pre-clinical use of the ovine model to evaluate candidate heart valve substitutes.


Sujet(s)
Valve aortique/composition chimique , Ingénierie tissulaire , Structures d'échafaudage tissulaires/composition chimique , Animaux , Humains , Ovis , Spécificité d'espèce
4.
J Biomed Mater Res B Appl Biomater ; 105(2): 249-259, 2017 02.
Article de Anglais | MEDLINE | ID: mdl-26469196

RÉSUMÉ

Heart valve tissue engineering offers the promise of improved treatments for congenital heart disorders; however, widespread clinical availability of a tissue engineered heart valve (TEHV) has been hindered by scientific and regulatory concerns, including the lack of a disposable, bioreactor system for nondestructive valve seeding and mechanical conditioning. Here we report the design for manufacture and the production of full scale, functional prototypes of such a system. To evaluate the efficacy of this bioreactor as a tool for seeding, ovine aortic valves were decellularized and subjected to seeding with human mesenchymal stem cells (hMSC). The effects of pulsatile conditioning using cyclic waveforms tuned to various negative and positive chamber pressures were evaluated, with respect to the seeding of cells on the decellularized leaflet and the infiltration of seeded cells into the interstitium of the leaflet. Infiltration of hMSCs into the aortic valve leaflet was observed following 72 h of conditioning under negative chamber pressure. Additional conditioning under positive pressure improved cellular infiltration, while retaining gene expression within the MSC-valve interstitial cell phenotype lineage. This protocol resulted in a subsurface pilot population of cells, not full tissue recellularization. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 249-259, 2017.


Sujet(s)
Valve aortique , Bioprothèse , Bioréacteurs , Prothèse valvulaire cardiaque , Cellules souches mésenchymateuses/métabolisme , Ingénierie tissulaire , Animaux , Humains , Cellules souches mésenchymateuses/cytologie , Ovis , Ingénierie tissulaire/instrumentation , Ingénierie tissulaire/méthodes
5.
J Thorac Cardiovasc Surg ; 152(4): 1156-1165.e4, 2016 10.
Article de Anglais | MEDLINE | ID: mdl-27641300

RÉSUMÉ

BACKGROUND: Cardiac allometric organ growth after pediatric valve replacement can lead to patient-prosthesis size mismatch and valve re-replacement, which could be mitigated with allogeneic decellularized pulmonary valves treated with collagen conditioning solutions to enhance biological and mechanical performance, termed "bioengineered valves." In this study, we evaluated functional, dimensional, and biological responses of these bioengineered valves compared with traditional cryopreserved valves implanted in lambs during rapid somatic growth. METHODS: From a consanguineous flock of 13 lambs, the pulmonary valves of 10 lambs (mean weight, 19.6 ± 1.4 kg) were replaced with 7 bioengineered valves or 3 classically cryopreserved valves. After 6 months, the 10 lambs with implanted valves and 3 untreated flock mates were compared by echocardiography, cardiac catheterization, and explant pathology. RESULTS: Increases in body mass, valve geometric dimensions, and effective orifice areas were similar in the 2 groups of lambs. The bioengineered valves had higher median cusp-to-cusp coaptation areas (34.6%; interquartile range, 21.00%-35.13%) and were more similar to native valves (43.4%; interquartile range, 42.59%-44.01%) compared with cryopreserved valves (13.2%; interquartile range, 7.07%-13.91%) (P = .043). Cryopreserved valves cusps, but not bioengineered valve cusps, were thicker than native valve cusps (P = .01). Histologically, cryopreserved valves demonstrated less than native cellularity, whereas bioengineered valves that were acellular at the time of surgery gained surface endothelium and subsurface myofibroblast interstitial cells in pulmonary artery, sinus wall, and cusp base regions. CONCLUSIONS: Biological valve conduits can enlarge via passive dilatation without matrix synthesis, but this would result in decreased cusp coaptational areas. Bioengineered valves demonstrated similar annulus enlargement as cryopreserved valves but usually retained larger areas of cuspal coaptation. Heat-shock protein 47-positive (collagen-synthesizing) cells were present in previously acellular bioengineered sinus walls and cusp bases, but rarely in more distal cusp matrices.


Sujet(s)
Bioprothèse , Prothèse valvulaire cardiaque , Transplantation de cellules souches hématopoïétiques , Valve du tronc pulmonaire , Allogreffes , Animaux , Valve aortique , Enfant , Humains , Ovis
6.
Cardiovasc Eng Technol ; 7(4): 352-362, 2016 12.
Article de Anglais | MEDLINE | ID: mdl-27443841

RÉSUMÉ

There are many heart valve replacements currently available on the market; however, these devices are not ideal for pediatric patients with congenital heart valve defects. Decellularized valve substitutes offer potential for improved clinical outcomes and require pre-clinical testing guidelines and testing systems suitable for non-crosslinked, biological heart valves. The objective of this study was to assess the hydrodynamic performance of intact, bioengineered pulmonary valves using a custom pulse duplicator capable of testing intact biological valved conduits. The mechanical behavior of valve associated sinus and arterial tissue was also evaluated under biaxial loading. Cryopreserved, decellularized, extracellular matrix (ECM) conditioned and glutaraldehyde fixed valves showed reduced pressure gradients and increased effective orifice area for decellularized and ECM conditioned valves. ECM conditioning resulted in increased elastic modulus but decreased stretch in circumferential and longitudinal directions under biaxial loading. Overall, decellularization and ECM conditioning did not compromise the scaffolds, which exhibited satisfactory bench top performance.


Sujet(s)
Bioprothèse , Analyse de panne d'appareillage/méthodes , Prothèse valvulaire cardiaque , Animaux , Hydrodynamique , Suidae , Ingénierie tissulaire
7.
Acta Biomater ; 8(7): 2722-9, 2012 Jul.
Article de Anglais | MEDLINE | ID: mdl-22484150

RÉSUMÉ

Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain, relaxation and creep behaviors of the ovine pulmonary valve leaflet were investigated under planar-biaxial loading conditions to determine the effects of decellularization and a novel post-decellularization extracellular matrix (ECM) conditioning process. As expected, decellularization resulted in increased stretch along the loading axes. A reduction in relaxation was observed following decellularization. This was accompanied by a reduction in glycosaminoglycan (GAG) content. Based on previous implant studies, these changes may be of little functional consequence in the short term; however, the long term effects of decreased relaxation and GAG content remain unknown. Some restoration of relaxation was observed following ECM conditioning, especially in the circumferential specimen direction, which may help mitigate any detrimental effects due to decellularization. Regardless of processing, creep under biaxial loading was negligible.


Sujet(s)
Cryoconservation/méthodes , Matrice extracellulaire/métabolisme , Valve du tronc pulmonaire/cytologie , Valve du tronc pulmonaire/physiologie , Animaux , Phénomènes biomécaniques/physiologie , Prothèse vasculaire , Calorimétrie différentielle à balayage , Techniques in vitro , Test de matériaux , Ovis , Facteurs temps
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...