Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Rep ; 13(1): 22266, 2023 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-38097738

RÉSUMÉ

Needs for neutron detection and monitoring in high neutron flux environments are increasing in several different fields. A completely solid-state, current mode bolometric detector is constructed as a solid substrate transition edge sensor based on a high-T[Formula: see text] superconducting meander. The detector consists of four individual pixels of which three pixels include [Formula: see text] neutron absorption layers. The absorbed energy per neutron absorption reaction is modelled and compared to experimental data. The response of the tested detector is directly correlated to a cold neutron beam with a flux of [Formula: see text] modulated by a slit. The signal is found to be an order of magnitude higher than the thermal background. The dynamics described by the temporal saturation constants is governed by a modulation frequency less than [Formula: see text]. The thermal response is dynamic and never fully saturates for [Formula: see text] exposures. The efficiency for this proof-of-principle design is 1-2%. Possibilities for optimization are identified, that will increase the efficiency to become comparable to existing solid boron-10 detectors. The existing detectors with event-based read-out have limited functionality in high flux environments. The superconducting bolometer described in this work using current-mode readout will pave the way for high flux applications.

2.
Sci Rep ; 13(1): 15274, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37714939

RÉSUMÉ

Neutron dark-field imaging is a powerful technique for investigating the microstructural properties of materials through high-resolution full-field mapping of small-angle scattering. However, conventional neutron dark-field imaging utilizing Talbot-Lau interferometers is limited to probing only one scattering direction at a time. Here, we introduce a novel multi-directional neutron dark-field imaging approach that utilizes a single absorption grating with a two-dimensional pattern to simultaneously probe multiple scattering directions. The method is demonstrated to successfully resolve fiber orientations in a carbon compound material as well as the complex morphology of the transformed martensitic phase in additively manufactured stainless steel dogbone samples after mechanical deformation. The latter results reveal a preferential alignment of transformed domains parallel to the load direction, which is verified by EBSD. The measured real-space correlation functions are in good agreement with those extracted from the EBSD map. Our results demonstrate that multi-directional neutron dark-field imaging is overcoming significant limitations of conventional neutron dark-field imaging in assessing complex heterogeneous anisotropic microstructures and providing quantitative structural information on multiple length scales.

3.
J Imaging ; 8(3)2022 Mar 17.
Article de Anglais | MEDLINE | ID: mdl-35324632

RÉSUMÉ

Spectral X-ray computed tomography (SCT) is an emerging method for non-destructive imaging of the inner structure of materials. Compared with the conventional X-ray CT, this technique provides spectral photon energy resolution in a finite number of energy channels, adding a new dimension to the reconstructed volumes and images. While this mitigates energy-dependent distortions such as beam hardening, metal artifacts due to photon starvation effects are still present, especially for low-energy channels where the attenuation coefficients are higher. We present a correction method for metal artifact reduction in SCT that is based on spectral deep learning. The correction efficiently reduces streaking artifacts in all the energy channels measured. We show that the additional information in the energy domain provides relevance for restoring the quality of low-energy reconstruction affected by metal artifacts. The correction method is parameter free and only takes around 15 ms per energy channel, satisfying near-real time requirement of industrial scanners.

4.
Sci Rep ; 11(1): 14919, 2021 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-34290334

RÉSUMÉ

Laser powder bed fusion is an additive manufacturing technique extensively used for the production of metallic components. Despite this process has reached a status at which parts are produced with mechanical properties comparable to those from conventional production, it is still prone to introduce detrimental tensile residual stresses towards the surfaces along the building direction, implying negative consequences on fatigue life and resistance to crack formations. Laser shock peening (LSP) is a promising method adopted to compensate tensile residual stresses and to introduce beneficial compressive residual stress on the treated surfaces. Using neutron Bragg edge imaging, we perform a parametric study of LSP applied to 316L steel samples produced by laser powder bed fusion additive manufacturing. We include in the study the novel 3D-LSP technique, where samples are LSP treated also during the building process, at intermediate build layers. The LSP energy and spot overlap were set to either 1.0 or 1.5 J and 40[Formula: see text] or 80[Formula: see text] respectively. The results support the use of 3D-LSP treatment with the higher LSP laser energy and overlap applied, which showed a relative increase of surface compressive residual stress (CRS) and CRS depth by 54[Formula: see text] and 104[Formula: see text] respectively, compared to the conventional LSP treatment.

5.
Sci Rep ; 10(1): 14867, 2020 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-32913251

RÉSUMÉ

Neutron Bragg edge imaging enables spatially resolved studies of crystalline features through the exploitation and analysis of Bragg edges in the transmission spectra recorded in each pixel of an imaging detector. Studies with high spectral resolutions, as is required e.g. for high-resolution strain mapping, and with large wavelength ranges have been largely reserved to pulsed neutron sources. This is due to the fact, that the efficiency for high wavelength resolution measurements is significantly higher at short pulse sources. At continuous sources a large fraction of the available neutrons must be sacrificed in order to achieve high wavelength resolution for a relevant bandwidth e.g. through a chopper system. Here we introduce a pulse overlap transmission imaging technique, which is suited to increase the available flux of high wavelength resolution time-of-flight neutron Bragg edge imaging at continuous neutron sources about an order of magnitude. Proof-of-principle measurements utilizing a chopper with a fourfold repeated random slit distribution of eight slits were performed at a thermal neutron beamline. It is demonstrated, that disentanglement of the overlapping pulses is achieved with the correlation theorem for signal processing. Thus, the Bragg edge pattern can be reconstructed from the strongly overlapping Bragg edge spectra recorded and the results demonstrate the feasibility of the technique.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...