Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 54
Filtrer
1.
Methods Cell Biol ; 184: 59-68, 2024.
Article de Anglais | MEDLINE | ID: mdl-38555158

RÉSUMÉ

Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid origin and immature state, whose hallmark is the capacity to suppress T cells and other immune populations. In mice, the first approach to identify MDSCs relies in the measurement of their phenotypical markers: CD11b and GR-1. In addition, two main subtypes of MDSCs have been defined based on the expression of the following markers: CD11b+ Ly6G- Ly6C+ (monocytic-MDSCs, M-MDSCs) and CD11b+ Ly6G+ Ly6C+/low (polymorphonuclear-MDSCs, PMN-MDSCs). Since CD11b+ GR-1+ (Ly6C+/Ly6G+) MDSCs can increase significantly in peripheral blood during numerous acute or chronic processes, measuring alterations in the phenotypic markers CD11b and GR-1 could be important as a first step before assessing the suppressive function of the cells. In many cases it could be necessary to measure CD11b+ Gr-1+ cells from a minimum volume of peripheral blood cells without greatly affecting animal viability, since this approach would allow for further studies to be conducted on subsequent days, such as measuring parameters of the immune response or even survival in the context of the pathology under study. The following protocol describes a simple and optimized protocol for measuring the presence of CD11b+ GR-1+ (Ly6C+/Ly6G+) myeloid cells using 2+ channel flow cytometry, from a minimum volume of mouse peripheral blood obtained by facial vein puncture.


Sujet(s)
Monocytes , Cellules myéloïdes , Souris , Animaux , Cellules myéloïdes/métabolisme , Lymphocytes T , Cytométrie en flux , Souris de lignée C57BL
2.
Sci Rep ; 14(1): 1807, 2024 01 20.
Article de Anglais | MEDLINE | ID: mdl-38245549

RÉSUMÉ

Staphylococcal biofilms significantly contribute to prosthetic joint infection (PJI). However, 40% of S. epidermidis PJI isolates do not produce biofilms, which does not explain the role of biofilms in these cases. We studied whether the supernatant from planktonic S. epidermidis alters osteoblast function. Non-biofilm-forming S. epidermidis supernatants (PJI- clinical isolate, healthy skin isolate (HS), and ATCC12228 reference strain) and biofilm-forming supernatants (PJI+ clinical isolate, ATCC35984 reference strain, and Staphylococcus aureus USA300 reference strain) were included. Osteoblasts stimulated with supernatants from non-biofilm-forming isolates for 3, 7, and 14 days showed significantly reduced cellular DNA content compared with unstimulated osteoblasts, and apoptosis was induced in these osteoblasts. Similar results were obtained for biofilm-forming isolates, but with a greater reduction in DNA content and higher apoptosis. Alkaline phosphatase activity and mineralization were significantly reduced in osteoblasts treated with supernatants from non-biofilm-forming isolates compared to the control at the same time points. However, the supernatants from biofilm-forming isolates had a greater effect than those from non-biofilm-forming isolates. A significant decrease in the expression of ATF4, RUNX2, ALP, SPARC, and BGLAP, and a significant increase in RANK-L expression were observed in osteoblasts treated with both supernatants. These results demonstrate that the supernatants of the S. epidermidis isolate from the PJI- and HS (commensal) with a non-biofilm-forming phenotype alter the function of osteoblasts (apoptosis induction, failure of cell differentiation, activation of osteoblasts, and induction of bone resorption), similar to biofilm-forming isolates (PJI+, ATCC35984, and S. aureus USA300), suggesting that biofilm status contributes to impaired osteoblast function and that the planktonic state can do so independently of biofilm production.


Sujet(s)
Infections à staphylocoques , Staphylococcus epidermidis , Humains , Staphylococcus aureus/génétique , Biofilms , Ostéoblastes , ADN/métabolisme
3.
Life (Basel) ; 13(12)2023 Dec 10.
Article de Anglais | MEDLINE | ID: mdl-38137920

RÉSUMÉ

According to the available ethnobotanical data, the Bouvardia ternifolia plant has long been used in Mexican traditional medicine to relieve the symptoms of inflammation. In the present study, the cytotoxic effect of extracts obtained from the flowers, leaves and stems of B. ternifolia using hexane, ethyl acetate (AcOEt) and methanol (MeOH) was evaluated by applying them to the SiHa and MDA-MB-231 cancer cell lines. An MTT reduction assay was carried out along with = biological activity assessments, and the content of total phenols, tannins, anthocyanins, betalains and saponins was quantified. According to the obtained results, nine extracts exhibited a cytotoxic effect against both the SiHa and MDA lines. The highest cytotoxicity was measured for leaves treated with the AcOEt (ID50 of 75 µg/mL was obtained for MDA and 58.75 µg/mL for SiHa) as well as inhibition on ABTS•+ against DPPH• radical, while MeOH treatment of stems and AcOEt of flowers yielded the most significant antioxidant capacity (90.29% and 90.11% ABTS•+ radical trapping). Moreover, the highest phenolic compound content was measured in the stems (134.971 ± 0.294 mg EAG/g), while tannins were more abundant in the leaves (257.646 mg eq cat/g) and saponins were most prevalent in the flowers (20 ± 0 HU/mg). Screening tests indicated the presence of flavonoids, steroids, terpenes and coumarins, as well as ursolic acid, in all the studied extracts. These results demonstrate the biological potential of B. ternifolia.

4.
Molecules ; 28(24)2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-38138485

RÉSUMÉ

In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.


Sujet(s)
GMP cyclique , Systèmes de seconds messagers , Systèmes de seconds messagers/physiologie , Transduction du signal/physiologie , Bactéries , AMP cyclique , Nucléotides cycliques , Protéines bactériennes
5.
Int Rev Cell Mol Biol ; 375: 117-163, 2023.
Article de Anglais | MEDLINE | ID: mdl-36967151

RÉSUMÉ

Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.


Sujet(s)
Maladie de Chagas , Cellules myéloïdes suppressives , Trypanosoma cruzi , Animaux , Souris , Maladie de Chagas/parasitologie , Maladie de Chagas/prévention et contrôle , Système immunitaire , Lymphocytes T régulateurs
6.
Molecules ; 27(23)2022 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-36500537

RÉSUMÉ

As they manifest specifically and reversibly, lectins are proteins or glycoproteins with the characteristic of agglutinating erythrocytes. Given that grain legume lectins can represent 10% of protein content and can have various biological functions, they are extensively studied. The objective of this work was to purify and partially characterize the lectins of Phaseolus vulgaris black, var surco and vara (LBBS and LBBV). Both lectin types were purified by affinity chromatography on stroma matrix, which agglutinated human erythrocytes type A, B, and O, as well as rabbit, hamster, pig, and chicken erythrocytes. Native-PAGE was employed for molecular mass determination, yielding 109.36 and 112.68 kDa for BBS and BBV, respectively. Further analyses revealed that these lectins are tetrameric glycoproteins that require Ca+2, Mn+2 and Mg+2 ions for exhibiting their hemagglutinating function, which can be inhibited by fetuin. Moreover, optimal pH was established for both lectins (10.5 for LBBS and 7-9 for LBBV), while their activity was temperature-dependent and ceased above 70 °C. Finally, the observed differences in the biochemical characteristics and bioactive functions were ascribed to the different physiological characteristics of each seed, as well as the protein itself.


Sujet(s)
Phaseolus , Humains , Lapins , Suidae , Animaux , Phaseolus/composition chimique , Lectines/composition chimique , Graines/composition chimique , Chromatographie d'affinité , Érythrocytes/métabolisme , Glycoprotéines/analyse , Lectines végétales/pharmacologie
7.
Front Cell Infect Microbiol ; 12: 1003781, 2022.
Article de Anglais | MEDLINE | ID: mdl-36250061

RÉSUMÉ

It is widely accepted that the immune system includes molecular and cellular components that play a role in regulating and suppressing the effector immune response in almost any process in which the immune system is involved. Myeloid-derived suppressor cells (MDSCs) are described as a heterogeneous population of myeloid origin, immature state, with a strong capacity to suppress T cells and other immune populations. Although the initial characterization of these cells was strongly associated with pathological conditions such as cancer and then with chronic and acute infections, extensive evidence supports that MDSCs are also involved in physiological/non-pathological settings, including pregnancy, neonatal period, aging, and vaccination. Vaccination is one of the greatest public health achievements and has reduced mortality and morbidity caused by many pathogens. The primary goal of prophylactic vaccination is to induce protection against a potential pathogen by mimicking, at least in a part, the events that take place during its natural interaction with the host. This strategy allows the immune system to prepare humoral and cellular effector components to cope with the real infection. This approach has been successful in developing vaccines against many pathogens. However, when the infectious agents can evade and subvert the host immune system, inducing cells with regulatory/suppressive capacity, the development of vaccines may not be straightforward. Notably, there is a long list of complex pathogens that can expand MDSCs, for which a vaccine is still not available. Moreover, vaccination against numerous bacteria, viruses, parasites, and fungi has also been shown to cause MDSC expansion. Increases are not due to a particular adjuvant or immunization route; indeed, numerous adjuvants and immunization routes have been reported to cause an accumulation of this immunosuppressive population. Most of the reports describe that, according to their suppressive nature, MDSCs may limit vaccine efficacy. Taking into account the accumulated evidence supporting the involvement of MDSCs in vaccination, this review aims to compile the studies that highlight the role of MDSCs during the assessment of vaccines against pathogens.


Sujet(s)
Cellules myéloïdes suppressives , Immunité , Immunisation , Lymphocytes T , Vaccination
8.
Vet Immunol Immunopathol ; 251: 110460, 2022 Sep.
Article de Anglais | MEDLINE | ID: mdl-35901545

RÉSUMÉ

Low-cost adjuvants are urgently needed for the development of veterinary vaccines able to trigger strong immune responses. In this work, we describe a method to obtain a low-cost cage-like particles (ISCOMATRIX-like) adjuvant useful to formulate veterinary vaccines candidates. The main components to form the particles are lipids and saponins, which were obtained from egg yolk by ethanolic extraction and by dialyzing a non-refined saponins extract, respectively. Lipids were fully characterized by thin layer chromatography (TLC) and gas-chromatography (GC) and enzymatic methods, and saponins were characterized by TLC, HPLC and MALDI-TOF. Cage-like particles were prepared with these components or with commercial inputs. Both particles and the traditional Alum used in veterinary vaccines were compared by immunizing mice with Ovalbumin (OVA) formulated with these adjuvants and assessing IgG1, IgG2a anti OVA antibodies and specific Delayed-type Hypersensitivity (DTH). In the yolk extract, a mixture of phospholipids, cholesterol and minor components of the extract (e.g. lyso-phospholipids) with suitable proportions to generate cage-like particles was obtained. Also, semi-purified saponins with similar features to those of the QuilA® were obtained. Cage-like particles prepared with these components have 40-50 nm and triggers similar levels of Anti-OVA IgG1 and DTH than with commercial inputs but higher specific-IgG2a. Both adjuvants largely increased the levels of IgG1, IgG2a and DTH in relation to the formulation with Alum. The methods described to extract lipids from egg yolk and saponins from non-refined extract allowed us to obtain an inexpensive and highly effective adjuvant.


Sujet(s)
Saponines , Vaccins , Adjuvants immunologiques/composition chimique , Animaux , Immunoglobuline G , Souris , Ovalbumine
9.
Foods ; 11(14)2022 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-35885318

RÉSUMÉ

Amaranth seeds, although a valuable food in Mexico, contain anti-nutritional compounds that can affect food quality. As a part of this work, the proximate composition, fatty acid profile, protein digestibility, and the effect of germination and popping of Amaranthus hypochondriacus seeds was analyzed with the aim of eliminating anti-nutritional compounds. Untreated seeds comprised of 11.35-18.8% protein and 0.27-13.39% lipids, including omega 3, 6, and 9 fatty acids such as oleic, linoleic, linolenic, and arachidonic acid. The main minerals detected were Ca+2, K+1, and Mg+2. Nevertheless in vitro studies indicate that germination significantly improved digestibility, whereby treatments aimed at reducing anti-nutritional compounds decreased lectin concentration, while significantly increasing tannins and completely eliminating trypsins and saponins.

10.
Int J Mol Sci ; 23(9)2022 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-35563384

RÉSUMÉ

Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA−, icaD− genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.


Sujet(s)
Granulocytes neutrophiles , Peptide hydrolases , Infections à staphylocoques , Staphylococcus epidermidis , Animaux , Biofilms , Cathepsine B , Cathepsine G , Metalloproteases , Souris , Myéloblastine , Granulocytes neutrophiles/métabolisme , Peptide hydrolases/métabolisme , Infections à staphylocoques/microbiologie
11.
Macromol Biosci ; 22(6): e2100515, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35388617

RÉSUMÉ

Transcutaneous immunization (TCI) provides a valuable alternative approach to conventional vaccination because of the high accessibility and the exceptional immunological characteristics of the skin, but its application is limited by the low permeability of the stratum corneum. Although nanogels (NGs) have proven to enhance skin penetration of macromolecules with minimum damage, their use in TCI remains almost unexplored. In this context, this article evaluates the performance of novel film-forming NGs (FF-NGs) as TCI. This TCI platform consists of NGs with multilobular morphology that positively combines the properties of cross-linked poly(N-vinylcaprolactam), like thermoresponsiveness and the ability to load and release a cargo, with the film-forming capacity of low Tg lobes. FF-NGs and formed films are characterized at different levels. Formed films show to be able to uniformly load an antigenic protein and release it with a profile depending on the temperature and on their FF-NGs content. In vivo studies have demonstrated that FF-NGs promote the penetration of not only an antigenic protein, but also an adjuvant until the immunocompetent area of skin, generating an adjuvant-dependent specific immune response. Finally, this study provides a successful proof of concept that FF-NGs can be a powerful tool for the transcutaneous release of complex formulations.


Sujet(s)
Peau , Vaccination , Administration par voie cutanée , Antigènes , Immunisation , Nanogels , Peau/métabolisme
12.
Antioxidants (Basel) ; 11(3)2022 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-35326203

RÉSUMÉ

Pomegranate is a polyphenol-rich fruit. Studies have shown that extracts prepared from its juice or from different parts of the pomegranate plant have various biological activities including antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, cardioprotective, and antidiabetic. The therapeutic potential has been attributed to various phytochemicals, including ellagic acid, punicic acid, flavonoids, anthocyanidins, anthocyanins, flavonols, and flavones. This review focuses on the scientific evidence of pomegranate juice as hypoglycemic, emphasizing the chemical composition and the possible mechanisms of action associated with this effect. Studies were identified using the PubMed, Scopus, and ISI Web of Science databases to identify relevant articles focused on the hypoglycemic effect of pomegranate juice. The physiological responses to pomegranate juice are reported here, including a decrease of oxidative stress damage, an increase of insulin-dependent glucose uptake, maintenance of ß-cell integrity, inhibition of nonenzymatic protein glycation, an increase of insulin sensitivity, modulation of peroxisome proliferator-activated receptor-gamma, inhibition of α-amylase, inhibition of α-glucosidase and dipeptidyl peptidase-4, and decreases in inflammation. Overall, we found a significant hypoglycemic effect of pomegranate in in vitro and in vivo studies and we summarize the potential mechanisms of action.

13.
Acta Trop ; 229: 106334, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35101415

RÉSUMÉ

The difficulties encountered in achieving treatments for chronic Chagas disease have promoted the investigation of new therapeutic strategies. In this study, we used two murine models of Trypanosoma cruzi chronic infection to determine the usefulness of applying a therapeutic vaccine alone or followed by benznidazole (Bz) chemotherapy. A vaccine formulation based on an N-terminal fragment of Trans-sialidase (TS) and Immunostimulant Particle Adjuvant (ISPA) - TSNt-ISPA was obtained. Firstly, the immunogenicity and protective capacity of TSNt-ISPA was demonstrated as a prophylactic formulation in an acute model of infection. Later, the formulation was assessed as a therapeutic vaccine alone or combined with (Bz) using two models of chronic infection. BALB/c mice chronically infected with Sylvio X10/4 or Tulahuen cl2 T. cruzi strains were not treated as control or treated only with the therapeutic vaccine TSNt-ISPA, with a combined treatment TSNt-ISPA+Bz (Bz applied after the vaccine), or only with Bz. The vaccination schedule consisted of TSNt-ISPA administration at days110, 120, and 130 post-infection (pi) and Bz administration was performed daily from day 140 to 170 pi. At day 273 pi, electrocardiographic (ECG) parameters, heart parasite load, myocarditis, and heart fibrosis were assessed. In both models, therapeutic administration of TSNt-ISPA reduced ECG alterations and the cardiac tissue damage observed in the chronic phase. Moreover, vaccine treatment significantly decreased heart parasite load in both Sylvio X10/4 and Tulahuen cl2 infected mice. The combined treatment, but not Bz or vaccine administration alone, allowed to restore ECG parameters in Tulahuen cl2 infected mice. The results indicate the usefulness of the therapeutic TSNt-ISPA formulation in BALB/c mice chronically infected with Sylvio X10/4 or Tulahuen cl2 strain. For the mice infected with T. cruzi Tulahuen cl2 strain, the combined treatment with the vaccine and Bz had a more positive effect on the course of heart disease than the individual treatments with the vaccine or Bz alone.


Sujet(s)
Maladie de Chagas , Nitroimidazoles , Trypanocides , Trypanosoma cruzi , Vaccins , Animaux , Maladie de Chagas/parasitologie , Souris , Nitroimidazoles/usage thérapeutique , Infection persistante , Trypanocides/usage thérapeutique , Vaccins/usage thérapeutique
14.
Plants (Basel) ; 12(1)2022 Dec 27.
Article de Anglais | MEDLINE | ID: mdl-36616260

RÉSUMÉ

Pharmacological treatment of pain often causes undesirable effects, so it is necessary to look for natural, safe, and effective alternatives to alleviate painful behavior. In this context, it is known that different parts of pomegranate have been widely consumed and used as preventive and therapeutic agents since ancient times. For example, it has been shown to have an antinociceptive effect, however, there are many varieties. Each part has been found to display unique and attractive pharmacological activities. The content of the active phytochemicals in pomegranate depends on the cultivar, geographical region, the maturity, and the processing method. In this context, the effects of various pomegranate varieties and other parts of the pomegranate (e.g., peel and juice) on pain behavior have not been examined. The aim was to evaluate and compare the antinociceptive effect of ethanolic extracts (PEx) and lyophilized juices (Lj) of three varieties of pomegranate in the formalin test. In addition, computer-aided analysis was performed for determining biological effects and toxicity. Peels were extracted with ethanol and evaporated by rotary evaporation, and juices were filtered and lyophilized. Wistar rats (N = 48) were randomly distributed into 8 groups (n = 6) (Vehicle, Acetylsalicylic Acid, PEx1, PEx2, PEx3, Lj1, Lj2, and Lj3). The formalin test (2%) was carried out, which consists of administering formalin in paw and counting the paw flinches for 1 h, with prior administration of treatments. All samples have an antinociceptive effect (phase 1: 2.8-10%; phase 2: 23.2-45.2%). PEx2 and Lj2 had the greatest antinociceptive effect (57.8-58.9%), and bioactive compounds such as tannins and flavonoids showed promising pharmacodynamic properties that may be involved in the antinociceptive effect, and can be considered as a natural alternative for the treatment of nociceptive and inflammatory pain.

15.
Front Cell Infect Microbiol ; 11: 671104, 2021.
Article de Anglais | MEDLINE | ID: mdl-34295832

RÉSUMÉ

Trypanosoma cruzi (T. cruzi) is a hemoflagellate protozoan parasite that causes Chagas disease, a neglected tropical disease that affects more than 6 million people around the world, mostly in Latin America. Despite intensive research, there is no vaccine available; therefore, new approaches are needed to further improve vaccine efficacy. It is well established that experimental T. cruzi infection induces a marked immunosuppressed state, which includes notably increases of CD11b+ GR-1+ myeloid-derived suppressor cells (MDSCs) in the spleen, liver and heart of infected mice. We previously showed that a trans-sialidase based vaccine (TSf-ISPA) is able to confer protection against a virulent T. cruzi strain, stimulating the effector immune response and decreasing CD11b+ GR-1+ splenocytes significantly. Here, we show that even in the immunological context elicited by the TSf-ISPA vaccine, the remaining MDSCs are still able to influence several immune populations. Depletion of MDSCs with 5 fluorouracil (5FU) at day 15 post-infection notably reshaped the immune response, as evidenced by flow cytometry of spleen cells obtained from mice after 21 days post-infection. After infection, TSf-ISPA-vaccinated and 5FU-treated mice showed a marked increase of the CD8 response, which included an increased expression of CD107a and CD44 markers in CD8+ cultured splenocytes. In addition, vaccinated and MDSC depleted mice showed an increase in the percentage and number of CD4+ Foxp3+ regulatory T cells (Tregs) as well as in the expression of Foxp3+ in CD4+ splenocytes. Furthermore, depletion of MDSCs also caused changes in the percentage and number of CD11chigh CD8α+ dendritic cells as well as in activation/maturation markers such as CD80, CD40 and MHCII. Thus, the obtained results suggest that MDSCs not only play a role suppressing the effector response during T. cruzi infection, but also strongly modulate the immune response in vaccinated mice, even when the vaccine formulation has a significant protective capacity. Although MDSC depletion at day 15 post-infection did not ameliorated survival or parasitemia levels, depletion of MDSCs during the first week of infection caused a beneficial trend in parasitemia and mice survival of vaccinated mice, supporting the possibility to target MDSCs from different approaches to enhance vaccine efficacy. Finally, since we previously showed that TSf-ISPA immunization causes a slight but significant increase of CD11b+ GR-1+ splenocytes, here we also targeted those cells at the stage of immunization, prior to T. cruzi challenge. Notably, 5FU administration before each dose of TSf-ISPA vaccine was able to significantly ameliorate survival and decrease parasitemia levels of TSf-ISPA-vaccinated and infected mice. Overall, this work supports that targeting MDSCs may be a valuable tool during vaccine design against T. cruzi, and likely for other pathologies that are characterized by the subversion of the immune system.


Sujet(s)
Maladie de Chagas , Cellules myéloïdes suppressives , Vaccins antiprotozoaires , Trypanosoma cruzi , Animaux , Maladie de Chagas/prévention et contrôle , Glycoprotéines , Souris , Sialidase
16.
Toxicol Res (Camb) ; 10(2): 312-324, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33884181

RÉSUMÉ

Pomegranate (Punica granatum L.) is a fruit used extensively in traditional medicine by ancient and modern cultures. Different parts of the tree and fruit, such as leaf, peel, pericarp, aril, seed, and juice contain considerable amounts of phenolic compounds with high antioxidant activities. To improve its storability, pomegranate juice was microencapsulated by spray drying. The present study evaluated microencapsulated pomegranate juice (MPJ) for toxic effects in Wistar rats and CD-1 mice to determine if MPJ can be considered safe for human consumption and used as a nutraceutical. No deaths or deleterious effects occurred when high doses of 5000 mg/kg were orally administered in rats for 14 days, indicating an absence of subacute toxicity. Similarly, 3000 mg/kg MPJ administered to CD-1 mice for 90 days did not show subchronic toxicity. In fact, MPJ resulted in lowered weight gain in both rats and mice. Cytotoxic and microbiological analyses of MPJ were also performed. MPJ did not cause any cytotoxicity in epithelial cell culture as tested using the Alamar blue assay. Additionally, histopathological analysis of kidney and liver corroborated the absence of toxicity in CD-1 mice. The microbial load of the MPJ was low, and no pathogenic bacteria were present. In conclusion, the results reported here show that high doses of MPJ are apparently innocuous in rats and mice for the 14 and 90 days investigated, respectively. Although preliminary, our results suggest that MPJ may be safe to ingest and may even have beneficial effects in reducing weight gain.

17.
Res Microbiol ; 172(2): 103796, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33412274

RÉSUMÉ

Previous studies have shown that biofilm-forming bacteria are deficient in tricarboxylic acid (TCA) cycle metabolites, suggesting a relationship between these cellular processes. In this work, we compared the proteomes of planktonic vs biofilm cells from a clinical strain of Staphylococcus epidermidis using LC-MS/MS. A total of 168 proteins were identified from both growth conditions. The biofilm cells showed enrichment of proteins participating in glycolysis for the formation of pyruvate; however, the absence of TCA cycle proteins and the presence of lactate dehydrogenase, formate acetyltransferase, and acetoin reductase suggested that pyruvate was catabolized to their respective products: lactate, formate and acetoin. On the other hand, planktonic cells showed proteins participating in glycolysis and the TCA cycle, the pentose phosphate pathway, gluconeogenesis, ATP generation and the oxidative stress response. Functional networks with higher interconnection were predicted for planktonic proteins. We propose that in S. epidermidis, the relative absence of TCA cycle proteins is associated with the formation of biofilms and that lactate, formate and acetoin are the end products of partial glucose metabolism.


Sujet(s)
Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Biofilms , Protéome , Staphylococcus epidermidis/génétique , Staphylococcus epidermidis/métabolisme , Métabolisme glucidique , Chromatographie en phase liquide , Cycle citrique , ADN bactérien , Régulation de l'expression des gènes bactériens , Glycolyse , Humains , Protéomique , Infections à staphylocoques/microbiologie , Spectrométrie de masse en tandem
18.
Molecules ; 25(14)2020 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-32708063

RÉSUMÉ

Previous studies demonstrated that pomegranate, which is a source of several bioactive molecules, induces modifications of high-density lipoproteins (HDL) lipid composition and functionality. However, it remains unclear whether the beneficial effects of pomegranate are related to improvement in the lipid components of HDL. Therefore, in this placebo-controlled study, we characterized the size and lipid composition of HDL subclasses and assessed the functionality of these lipoproteins after 30 days of supplementation with a pomegranate microencapsulated (MiPo) in New Zealand white rabbits. We observed a significant decrease in plasma cholesterol, triglycerides, and non-HDL sphingomyelin, as well as increases in HDL cholesterol and HDL phospholipids after supplementation with MiPo. Concomitantly, the triglycerides of the five HDL subclasses isolated by electrophoresis significantly decreased, whereas phospholipids, cholesterol, and sphingomyelin of HDL subclasses, as well as the HDL size distribution remained unchanged. Of particular interest, the triglycerides content of HDL, estimated by the triglycerides-to-phospholipids ratio, decreased significantly after MiPo supplementation. The modification on the lipid content after the supplementation was associated with an increased resistance of HDL to oxidation as determined by the conjugated dienes formation catalyzed by Cu2+. Accordingly, paraoxonase-1 (PON1) activity determined with phenylacetate as substrate increased after MiPo. The effect of HDL on endothelial function was analyzed by the response to increasing doses of acetylcholine of aorta rings co-incubated with the lipoproteins in an isolated organ bath. The HDL from rabbits that received placebo partially inhibited the endothelium-dependent vasodilation. In contrast, the negative effect of HDL on endothelial function was reverted by MiPo supplementation. These results show that the beneficial effects of pomegranate are mediated at least in part by improving the functionality of HDL, probably via the reduction of the content of triglycerides in these lipoproteins.


Sujet(s)
Cardiotoniques/composition chimique , Fruit/composition chimique , Lipoprotéines HDL/métabolisme , Extraits de plantes/composition chimique , Grenadier commun/composition chimique , Animaux , Aryldialkylphosphatase/métabolisme , Cardiotoniques/pharmacologie , Cholestérol/métabolisme , Cuivre/métabolisme , Vecteurs de médicaments/composition chimique , Endothélium/métabolisme , Fruit/métabolisme , Glucose/composition chimique , Humains , Mâle , Phospholipides/métabolisme , Extraits de plantes/pharmacologie , Polyosides/composition chimique , Grenadier commun/métabolisme , Lapins , Triglycéride/métabolisme , Vasodilatation/effets des médicaments et des substances chimiques
20.
Plants (Basel) ; 9(4)2020 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-32235455

RÉSUMÉ

The use of complementary medicine has recently increased in an attempt to find effective alternative therapies that reduce the adverse effects of drugs. Punica granatum L. (pomegranate) has been used in traditional medicine for different kinds of pain. This review aims to explore the scientific evidence about the antinociceptive effect of pomegranate. A selection of original scientific articles that accomplished the inclusion criteria was carried out. It was found that different parts of pomegranate showed an antinociceptive effect; this effect can be due mainly by the presence of polyphenols, flavonoids, or fatty acids. It is suggested in the literature that the mechanisms of action may be related to the activation of the L-arginine / NO pathway, members of the TRP superfamily (TRPA1 or TRPV1) and the opioid system. The implications for the field are to know the mechanisms of action by which this effect is generated and thus be able to create alternative treatments for specific types of pain, which help alleviate it and reduce the adverse effects produced by drugs. The results propose that pomegranate and secondary metabolites could be considered in the treatment of inflammatory, nociceptive, and neuropathic pain.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE