Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 599
Filtrer
1.
Sci Rep ; 14(1): 14639, 2024 06 25.
Article de Anglais | MEDLINE | ID: mdl-38918463

RÉSUMÉ

This study aimed to develop a deep learning model to predict the risk stratification of all-cause death for older people with disability, providing guidance for long-term care plans. Based on the government-led long-term care insurance program in a pilot city of China from 2017 and followed up to 2021, the study included 42,353 disabled adults aged over 65, with 25,071 assigned to the training set and 17,282 to the validation set. The administrative data (including baseline characteristics, underlying medical conditions, and all-cause mortality) were collected to develop a deep learning model by least absolute shrinkage and selection operator. After a median follow-up time of 14 months, 17,565 (41.5%) deaths were recorded. Thirty predictors were identified and included in the final models for disability-related deaths. Physical disability (mobility, incontinence, feeding), adverse events (pressure ulcers and falls from bed), and cancer were related to poor prognosis. A total of 10,127, 25,140 and 7086 individuals were classified into low-, medium-, and high-risk groups, with actual risk probabilities of death of 9.5%, 45.8%, and 85.5%, respectively. This deep learning model could facilitate the prevention of risk factors and provide guidance for long-term care model planning based on risk stratification.


Sujet(s)
Apprentissage profond , Soins de longue durée , Humains , Femelle , Mâle , Sujet âgé , Chine/épidémiologie , Études prospectives , Sujet âgé de 80 ans ou plus , Cause de décès , Personnes handicapées/statistiques et données numériques , Appréciation des risques , Mortalité/tendances , Facteurs de risque , Pronostic
2.
Anal Chim Acta ; 1314: 342801, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-38876517

RÉSUMÉ

BACKGROUND: Most of the investigations on distinct crystal structures of catalysts are individually focused on the difference of surface functional groups or adsorption properties, but rarely explore the changes of active sites to affect the electrocatalytic performance. Catalysts with diverse crystal structures had been applied to modified electrodes in different electrocatalytic reactions. However, there is currently a lack of an essential understanding for the role of real active sites in catalysts with crystalline structures in electroanalysis, which is crucial for designing highly sensitive sensing interfaces. RESULTS: Herein, cobalt molybdate with divergent crystal structures (α-CoMoO4 and ß-CoMoO4) were synthesized by adjusting the calcination temperature, indicating that α-CoMoO4 (800 °C) (60.00 µA µM-1) had the highest catalytic ability than ß-CoMoO4 (700 °C) (38.68 µA µM-1) and α-CoMoO4 (900 °C) (29.55 µA µM-1) for the catalysis of Pb(II). It was proved that the proportion of Co(II) and Mo(IV) as electron-rich sites in α-CoMoO4 (800 °C) were higher than ß-CoMoO4 (700 °C) and α-CoMoO4 (900 °C), possessing more electrons to participate in the valence cycles of Co(II)/Co(III) and Mo(IV)/Mo(VI) to boost the catalytic reduction of Pb(II). Specifically, Co(II) transferred a part of electrons to Mo(VI), promoting the formation of Mo(IV). Co(II) and Mo(IV), as the electron-rich sites, providing electrons to Pb(II), further accelerating the conversion of Pb(II) into Pb(0). SIGNIFICANCE: In the process of detecting Pb(II), the CoMoO4 structures under different temperatures have distinct content of electron-rich sites Co(II) and Mo(IV). α-CoMoO4 (800 °C), with the highest content are benefited to detect Pb(II). This work is conducive to understanding the effect of the changes of active sites resulting from crystal transformation on the electrocatalytic performance, and provides a way to construct sensitive electrochemical interfaces of distinct active sites.

3.
Int J Mol Sci ; 25(11)2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38891858

RÉSUMÉ

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the GLR family in oilseed rape (Brassica napus) and their role in resistance to the fungal pathogen Sclerotinia sclerotiorum. A total of 61 GLRs were identified in oilseed rape. They comprised three groups, as in Arabidopsis thaliana. Detailed computational analyses, including prediction of domain and motifs, cellular localization, cis-acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of BnGLRs in oilseed rape and Arabidopsis mutants of BnGLR homologs demonstrated that BnGLR35/AtGLR2.5 positively, while BnGLR12/AtGLR1.2 and BnGLR53/AtGLR3.2 negatively, regulated plant resistance to S. sclerotiorum, indicating that GLR genes were differentially involved in this resistance. Our findings reveal the complex involvement of GLRs in B. napus resistance to S. sclerotiorum and provide clues for further functional characterization of BnGLRs.


Sujet(s)
Ascomycota , Brassica napus , Résistance à la maladie , Maladies des plantes , Protéines végétales , Récepteurs au glutamate , Brassica napus/génétique , Brassica napus/microbiologie , Ascomycota/pathogénicité , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Maladies des plantes/génétique , Récepteurs au glutamate/génétique , Récepteurs au glutamate/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Phylogenèse , Régulation de l'expression des gènes végétaux , Arabidopsis/génétique , Arabidopsis/microbiologie , Étude d'association pangénomique , Famille multigénique , Génome végétal
4.
Front Microbiol ; 15: 1374458, 2024.
Article de Anglais | MEDLINE | ID: mdl-38827153

RÉSUMÉ

Background: Tuberculous meningitis (TBM) is the most severe form of tuberculosis (TB) and can be difficult to diagnose and treat. We aimed to describe the clinical presentation, diagnosis, disease spectrum, outcome, and prognostic factors of patients treated for TBM in China. Methods: A multicenter retrospective study was conducted from 2009 to 2019 enrolling all presumptive TBM patients referred to Xijing tertiary Hospital from 27 referral centers in and around Shaanxi province, China. Patients with clinical features suggestive of TBM (abnormal CSF parameters) were included in the study if they had adequate baseline information to be classified as "confirmed," "probable," or "possible" TBM according to international consensus TBM criteria and remained in follow-up. Patients with a confirmed alternative diagnosis or severe immune compromise were excluded. Clinical presentation, central nervous system imaging, cerebrospinal fluid (CSF) results, TBM score, and outcome-assessed using the modified Barthel disability index-were recorded and compared. Findings: A total of 341 presumptive TBM patients met selection criteria; 63 confirmed TBM (25 culture positive, 42 Xpert-MTB/RIF positive), 66 probable TBM, 163 possible TBM, and 49 "not TBM." Death was associated with BMRC grade III (OR = 5.172; 95%CI: 2.298-11.641), TBM score ≥ 15 (OR = 3.843; 95%CI: 1.372-10.761), age > 60 years (OR = 3.566; 95%CI: 1.022-12.442), and CSF neutrophil ratio ≥ 25% (OR = 2.298; 95%CI: 1.027-5.139). Among those with confirmed TBM, nearly one-third (17/63, 27.0%) had a TBM score < 12; these patients exhibited less classic meningitis symptoms and signs and had better outcomes compared with those with a TBM score ≥ 12. In this group, signs of disseminated/miliary TB (OR = 12.427; 95%CI: 1.138-135.758) and a higher TBM score (≥15, OR = 8.437; 95%CI: 1.328-53.585) were most strongly associated with death. Conclusion: TBM patients who are older (>60 years) have higher TBM scores or CSF neutrophil ratios, have signs of disseminated/miliary TB, and are at greatest risk of death. In general, more effort needs to be done to improve early diagnosis and treatment outcome in TBM patients.

5.
J Invest Dermatol ; 2024 Jun 03.
Article de Anglais | MEDLINE | ID: mdl-38838771

RÉSUMÉ

Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early pro-inflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to pro-resolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. Here, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet also accelerated timely switching from M1 to M2 phenotypes. Exosomes inhibition dysregulated macrophage responses resulting in aberrant inflammation and impaired healing, while provision of exogenous fibroblast exosomes corrected defects. Topical application of fibroblast exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.

6.
J Agric Food Chem ; 2024 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-38850252

RÉSUMÉ

Protein lysine lactylation, a recently discovered post-translational modification (PTM), is prevalent across tissues and cells of diverse species, serving as a regulator of glycolytic flux and biological metabolism. The yak (Bos grunniens), a species that has inhabited the Qinghai-Tibetan Plateau for millennia, has evolved intricate adaptive mechanisms to cope with the region's unique geographical and climatic conditions, exhibiting remarkable energy utilization and metabolic efficiency. Nonetheless, the specific landscape of lysine lactylation in yaks remains poorly understood. Herein, we present the first comprehensive lactylome profile of the yak, effectively identifying 421, 308, and 650 lactylated proteins in the heart, muscles, and liver, respectively. These lactylated proteins are involved in glycolysis/gluconeogenesis, the tricarboxylic acid cycle, oxidative phosphorylation, and metabolic process encompassing carbohydrates, lipids, and proteins during both anaerobic and aerobic glucose bio-oxidation, implying their crucial role in material and energy metabolism, as well as in maintaining homeostasis in yaks.

7.
J Cancer Res Clin Oncol ; 150(6): 303, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38861187

RÉSUMÉ

BACKGROUND: Human MARCH5 is a mitochondria-localized E3 ubiquitin-protein ligase that is essential for the regulation of mitochondrial dynamics. A large body of evidence suggests that imbalances in mitochondrial dynamics are strongly associated with cancer. However, the expression, biological function and prognostic significance of MARCH5 in hepatocellular carcinoma (HCC) have not been determined. MATERIALS AND METHODS: The mRNA and protein expression of MARCH5 in HCC cell lines and tumor tissues was assessed by real-time quantitative PCR, Western blot analysis and immunohistochemistry. The clinical prognostic significance of MARCH5 was evaluated in 135 HCC patients. Knockdown or overexpression of MARCH5 in HCC cells was determined by in vitro cell proliferation, migration and invasion assays, and in vivo tumor growth and metastasis assays. In addition, the intrinsic mechanisms by which MARCH5 regulates HCC cell growth and metastasis were explored. RESULTS: MARCH5 was significantly overexpressed in HCC cells and was closely associated with patients' poor postoperative prognosis. In vivo and in vitro experiments revealed that MARCH5 significantly promoted the increase and invasive and migratory ability of hepatocellular carcinoma cells, which was mainly due to the promotion of autophagy by MARCH5. Mechanistic studies revealed that MARCH5 promoted autophagy through ubiquitination degradation of p53 leading to malignant progression of hepatocellular carcinoma. CONCLUSION: Our findings suggest that MARCH5 plays a critical oncogenic role in HCC cells, which provides experimental evidence for the use of MARCH5 as a potential target for HCC therapy.


Sujet(s)
Carcinome hépatocellulaire , Évolution de la maladie , Tumeurs du foie , Souris nude , Protéine p53 suppresseur de tumeur , Ubiquitin-protein ligases , Ubiquitination , Humains , Carcinome hépatocellulaire/anatomopathologie , Carcinome hépatocellulaire/métabolisme , Carcinome hépatocellulaire/génétique , Tumeurs du foie/anatomopathologie , Tumeurs du foie/métabolisme , Tumeurs du foie/génétique , Ubiquitin-protein ligases/métabolisme , Ubiquitin-protein ligases/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Protéine p53 suppresseur de tumeur/génétique , Mâle , Animaux , Souris , Femelle , Pronostic , Prolifération cellulaire , Adulte d'âge moyen , Lignée cellulaire tumorale , Souris de lignée BALB C , Mouvement cellulaire
8.
Fitoterapia ; 176: 106053, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38838828

RÉSUMÉ

Biotransformation of ursane-type triterpenoid ilexgenin A by endophytic fungi Lasiodiplodia sp. MQD-4 and Pestalotiopsis sp. ZZ-1, isolated from Ilex pubescences and Callicarpa kwangtungensis respectively, was investigated for the first time. Six previously undescribed metabolites (1-6) with 23-norursane triterpenoids skeleton were isolated and their structures were unambiguously established by the analysis of spectroscopic data and single-crystal X-ray crystallographic experiments. Decarboxylation, oxidation, and hydroxylation reactions were observed on the triterpenoid skeleton. Especially, the decarboxylation of C-23 provided definite evidence to understand the biogenetic process of 23-norursane triterpenoids. Moreover, the qualitative analysis of the extract of I. pubescences showed metabolites 1, 3, 4, and 6 could be detected in the originated plant, indicating biotransformation by endophytic fungi is a practical strategy for the isolation of novel natural products. Finally, all isolates were evaluated for the protective activities against H2O2-induced HUVECs dysfunction in vitro. Compound 5 could improve the viability of endothelial cells and decrease the level of intracellular ROS.


Sujet(s)
Biotransformation , Endophytes , Cellules endothéliales de la veine ombilicale humaine , Ilex , Triterpènes , Triterpènes/isolement et purification , Triterpènes/pharmacologie , Triterpènes/métabolisme , Endophytes/composition chimique , Endophytes/métabolisme , Structure moléculaire , Humains , Ilex/microbiologie , Ascomycota/composition chimique , Ascomycota/métabolisme , Chine
9.
ACS Nano ; 18(20): 12808-12819, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38717026

RÉSUMÉ

Considerable progress has already been made in sweat sensors based on electrochemical methods to realize real-time monitoring of biomarkers. However, realizing long-term monitoring of multiple targets at the atomic level remains extremely challenging, in terms of designing stable solid contact (SC) interfaces and fully integrating multiple modules for large-scale applications of sweat sensors. Herein, a fully integrated wristwatch was designed using mass-manufactured sensor arrays based on hierarchical multilayer-pore cross-linked N-doped porous carbon coated by reduced graphene oxide (NPCs@rGO-950) microspheres with high hydrophobicity as core SC, and highly selective monitoring simultaneously for K+, Na+, and Ca2+ ions in human sweat was achieved, exhibiting near-Nernst responses almost without forming an interfacial water layer. Combined with computed tomography, solid-solid interface potential diffusion simulation results reveal extremely low interface diffusion potential and high interface capacitance (598 µF), ensuring the excellent potential stability, reversibility, repeatability, and selectivity of sensor arrays. The developed highly integrated-multiplexed wristwatch with multiple modules, including SC, sensor array, microfluidic chip, signal transduction, signal processing, and data visualization, achieved reliable real-time monitoring for K+, Na+, and Ca2+ ion concentrations in sweat. Ingenious material design, scalable sensor fabrication, and electrical integration of multimodule wearables lay the foundation for developing reliable sweat-sensing systems for health monitoring.


Sujet(s)
Sueur , Dispositifs électroniques portables , Poignet , Sueur/composition chimique , Facteurs temps , Électrolytes/analyse , Graphite/composition chimique , Porosité , Carbone/composition chimique , Cations/composition chimique , Humains , Surveillance biologique/instrumentation
10.
Anal Chem ; 96(22): 9069-9077, 2024 Jun 04.
Article de Anglais | MEDLINE | ID: mdl-38749062

RÉSUMÉ

Solid contact (SC) calcium ion-selective electrodes (Ca2+-ISEs) have been widely applied in the analysis of water quality and body fluids by virtue of the unique advantages of easy operation and rapid response. However, the potential drift during the long-term stability test hinders their further practical applications. Designing novel redox SC layers with large capacitance and high hydrophobicity is a promising approach to stabilize the potential stability, meanwhile, exploring the transduction mechanism is also of great guiding significance for the precise design of SC layer materials. Herein, flower-like copper sulfide (CunS-50) composed of nanosheets is meticulously designed as the redox SC layer by modification with the surfactant (CTAB). The CunS-50-based Ca2+-ISE (CunS-50/Ca2+-ISE) demonstrates a near-Nernstian slope of 28.23 mV/dec for Ca2+ in a wide activity linear range of 10-7 to 10-1 M, with a low detection limit of 3.16 × 10-8 M. CunS-50/Ca2+-ISE possesses an extremely low potential drift of only 1.23 ± 0.13 µV/h in the long-term potential stability test. Notably, X-ray absorption fine-structure (XAFS) spectra and electrochemical experiments are adopted to elucidate the transduction mechanism that the lipophilic anion (TFPB-) participates in the redox reaction of CunS-50 at the solid-solid interface of ion-selective membrane (ISM) and redox inorganic SC layer (CunS-50), thereby promoting the generation of free electrons to accelerate ion-electron transduction. This work provides an in-depth comprehension of the transduction mechanism of the potentiometric response and an effective strategy for designing redox materials of ion-electron transduction triggered by lipophilic anions.

11.
Sci Rep ; 14(1): 10996, 2024 05 14.
Article de Anglais | MEDLINE | ID: mdl-38744926

RÉSUMÉ

Clinical research has suggested that chronic HBV infection exerts a certain effect on the occurrence of cardiovascular disease by regulating cholesterol metabolism in liver cells. High serum apolipoprotein B/apolipoprotein A1 (ApoB/ApoA1) ratio plays a certain role in the above regulation, and it serves as a risk factor for cardiovascular disease. However, whether the ApoB/ApoA1 ratio is correlated with chronic HBV infection and its disease progression remains unclear. In accordance with the inclusion and exclusion criteria, all 378 participants administrated at Renmin Hospital of Wuhan University from March 2021 to March 2022, fell into Healthy Control (HC) group (50 participants), Hepatocellular carcinoma (HCC) group (107 patients), liver cirrhosis (LC) group (64 patients), chronic hepatitis B (CHB) group (62 patients), chronic hepatitis C (CHC) group (46 patients) and Hepatitis E Virus (HEV) group (49 patients). Serum ApoA1 and ApoB concentrations were measured at admission, and the ApoB/ApoA1 ratio was determined. The levels of laboratory parameters in the respective group were compared and ApoB/ApoA1 ratios in HCC patients and LC patients with different severity were further analyzed. ROC curves were plotted to analyze the early diagnostic ability of ApoB/ApoA1 ratio for HBV-associated HCC. Logistic regression and restricted cubic spline analysis were used to explore the correlation between ApoB/ApoA1 ratio and LC and HCC risk. A comparison was drawn in terms of ApoB/ApoA1 ratio between the groups, and the result was expressed in descending sequence: HEV group > CHB group > LC group > HCC group > CHC group > HC group, early-stage HCC < middle-stage HCC < advanced-stage HCC, Class A LC < Class B LC < Class C LC. Serum ApoB/ApoA1 ratio combined diagnosis with AFP exhibited the capability of increasing the detection efficacy and specificity of AFP for HCC and AFP-negative HCC. The incidence of LC and HCC in the respective logistic regression model showed a negative correlation with the serum ApoB/ApoA1 ratio in CHB patients (P < 0.05). After all confounding factors covered in this study were regulated, the result of the restricted cubic spline analysis suggested that in a certain range, serum ApoB/ApoA1 ratio showed an inverse correlation with the prevalence of LC or HCC in CHB patients. Serum ApoB/ApoA1 ratio in CHB patients may be conducive to identifying high-risk patients for HCC or LC, such that LC and HCC can be early diagnosed and treated.


Sujet(s)
Apolipoprotéine A-I , Carcinome hépatocellulaire , Hépatite B chronique , Cirrhose du foie , Tumeurs du foie , Humains , Carcinome hépatocellulaire/sang , Carcinome hépatocellulaire/virologie , Carcinome hépatocellulaire/étiologie , Tumeurs du foie/sang , Tumeurs du foie/virologie , Tumeurs du foie/étiologie , Tumeurs du foie/diagnostic , Apolipoprotéine A-I/sang , Mâle , Femelle , Adulte d'âge moyen , Cirrhose du foie/sang , Cirrhose du foie/virologie , Cirrhose du foie/diagnostic , Cirrhose du foie/complications , Hépatite B chronique/complications , Hépatite B chronique/sang , Adulte , Apolipoprotéine B-100/sang , Virus de l'hépatite B , Courbe ROC , Études cas-témoins , Apolipoprotéines B/sang
12.
Front Microbiol ; 15: 1362089, 2024.
Article de Anglais | MEDLINE | ID: mdl-38756732

RÉSUMÉ

Entomopathogenic fungi (EPF) are economical and environmentally friendly, forming an essential part of integrated pest management strategies. We screened six strains of Beauveria bassiana (B1-B6) (Hypocreales: Cordycipitaceae), of which B4 was the most virulent to Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). We further assessed the biological characteristics of strain B4 and the environmental factors influencing its ability to infect B. dorsalis. We also evaluated the effects of B4 on two of the natural predators of B. dorsalis. We found that strain B4 was the most virulent to 3rd instar larvae, pupae, and adult B. dorsalis, causing mortality rates of 52.67, 61.33, and 90.67%, respectively. B4 was not toxic to B. dorsalis eggs. The optimum B4 effects on B. dorsalis were achieved at a relative humidity of 91-100% and a temperature of 25°C. Among the six insecticides commonly used for B. dorsalis control, 1.8% abamectin emulsifiable concentrate had the strongest inhibitory effect on B4 strain germination. B4 spraying affected both natural enemies (Amblyseius cucumeris and Anastatus japonicus), reducing the number of A. cucumeris and killing A. japonicus adults. We found a valuable strain of EPF (B4) that is virulent against many life stages of B. dorsalis and has great potential for the biological control of B. dorsalis. We also provide an important theoretical and practical base for developing a potential fungicide to control B. dorsalis.

13.
Fish Physiol Biochem ; 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38722479

RÉSUMÉ

Leptins and other related genes have been proven to play vital roles in food intake, weight control, and other life activities. While the function of leptins in yellowtail kingfish (Seriola lalandi) has not yet been explored, in the present study, we investigated the structure and preliminary function of four leptin-related genes in S. lalandi. In detail, the sequence of two leptin genes (lepa and lepb), one leptin receptor gene (lepr), and one leptin receptor overlapping transcript (leprot) gene were obtained by homology cloning and RACE methods, in which lepa and lepb have similar structure. Moreover, homologous sequence alignment and evolutionary analysis of all four genes were clustered with Seriola dumerili. The tissue distribution of these four genes in thirteen tissues of yellowtail kingfish was detected by RT-qPCR. Both lepa and leprot were highly expressed in the brain and ovary, while lepb was highly expressed in the pituitary, gill, muscle, and ovary; lepr was highly expressed in the gill, kidney, and ovary. Additionally, these four genes also played roles in embryo development and early growth and development of larvae and juveniles of yellowtail kingfish. Finally, the function of leptin and leptin-related genes was investigated during fasting and re-feeding adaption of yellowtail kingfish. The results showed that these four genes have different regulation functions in five tissues; for example, the mRNA levels of lepa, lepr, and leprot in the brain decreased during fasting and immediately increased after re-feeding, while the mRNA level of lepb did not show significant fluctuation during starvation but significantly lowered after re-feeding. However, lepa and lepb mRNA levels were significantly elevated during fasting and returned to control levels after re-feeding, and there were no significant changes in the expression of lepr and leprot in the liver during fasting and after re-feeding. Moreover, the body mass of fish in the experimental group was measured, and compensatory growth was found after the resumption of feeding. These results suggested that leptin and receptor genes play different functions in different tissues to regulate the physiological state of fish in food deficiency and gain processes.

14.
J Intensive Care Med ; : 8850666241253162, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38748540

RÉSUMÉ

OBJECTIVES: The study investigated whether percutaneous partial pressure of oxygen (PtcO2), percutaneous partial pressure of carbon dioxide (PtcCO2), and the derived tissue perfusion index (TPI) can predict the severity and short-term outcomes of severe and critical COVID-19. DESIGN: Prospective observational study conducted from January 1, 2023 to February 10, 2023. SETTING: A teaching hospital specializing in tertiary care in Nanjing City, Jiangsu Province, China. PARTICIPANTS: Adults (≥18 years) with severe and critical COVID-19. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: The general information and vital signs of the patients were collected. The PtcO2 and PtcCO2 were monitored in the left dorsal volar. The ratio of TPI was defined as the ratio of PtcO2/fraction of inspired oxygen (FiO2) to PtcCO2. Mortality at 28 was recorded. The ability of the TPI to assess disease severity and predict prognosis was determined. ENDPOINT: Severity of the disease on the enrollment and mortality at 28. RESULTS: A total of 71 patients with severe and critical COVID-19, including 40 severe and 31 critical cases, according to the COVID-19 treatment guidelines published by WHO, were recruited. Their median age was 70 years, with 56 (79%) males. The median SpO2/FiO2, PtcO2, PtcCO2, PtcO2/ FiO2, and TPI values were 237, 61, 42, 143, and 3.6 mm Hg, respectively. Compared with those for severe COVID-19, the TPI, PtcO2/ FiO2, SpO2/FiO2, and PtcO2 were significantly lower in critical COVID-19, while the PtcCO2 was significantly higher. After 28 days, 26 (37%) patients had died. TPI values < 3.5 were correlated with more severe disease status (AUC 0.914; 95% CI: 0.847-0.981, P < 0.001), and TPI < 3.3 was associated with poor outcomes (AUC 0.937; 95% CI 0.880-0.994, P < 0.001). CONCLUSIONS: The tissue perfusion index (TPI), PtcCO2, and PtcO2/ FiO2 can predict the severity and outcome of severe and critical COVID-19.

15.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167257, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38795836

RÉSUMÉ

Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.


Sujet(s)
Récepteur de l'apeline , Multimérisation de protéines , Humains , Récepteur de l'apeline/métabolisme , Récepteur de l'apeline/génétique , Récepteur de l'apeline/composition chimique , Animaux , Transduction du signal , Athérosclérose/métabolisme , Démence vasculaire/métabolisme , Démence vasculaire/anatomopathologie , Hypertension artérielle/métabolisme , Hypertension artérielle/anatomopathologie
16.
J Med Chem ; 67(10): 8161-8171, 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38690856

RÉSUMÉ

The mediator kinases CDK8 and CDK19 control the dynamic transcription of selected genes in response to various signals and have been shown to be hijacked to sustain hyperproliferation by various solid and liquid tumors. CDK8/19 is emerging as a promising anticancer therapeutic target. Here, we report the discovery of compound 12, a novel small molecule CDK8/19 inhibitor. This molecule demonstrated not only decent enzymatic and cellular activities but also remarkable selectivity in CDK and kinome panels. Besides, compound 12 also displayed favorable ADME profiles including low CYP1A2 inhibition, acceptable clearance, and high oral bioavailability in multiple preclinical species. Robust in vivo PD and efficacy studies in mice models further demonstrated its potential use as mono- and combination therapy for the treatment of cancers.


Sujet(s)
Antinéoplasiques , Cyclin-Dependent Kinase 8 , Kinases cyclines-dépendantes , Inhibiteurs de protéines kinases , Cyclin-Dependent Kinase 8/antagonistes et inhibiteurs , Cyclin-Dependent Kinase 8/métabolisme , Humains , Animaux , Inhibiteurs de protéines kinases/pharmacologie , Inhibiteurs de protéines kinases/composition chimique , Inhibiteurs de protéines kinases/pharmacocinétique , Inhibiteurs de protéines kinases/usage thérapeutique , Inhibiteurs de protéines kinases/synthèse chimique , Kinases cyclines-dépendantes/antagonistes et inhibiteurs , Kinases cyclines-dépendantes/métabolisme , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Antinéoplasiques/pharmacocinétique , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/synthèse chimique , Souris , Découverte de médicament , Lignée cellulaire tumorale , Relation structure-activité , Prolifération cellulaire/effets des médicaments et des substances chimiques , Tumeurs/traitement médicamenteux , Rats
17.
RSC Adv ; 14(16): 11323-11333, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38595724

RÉSUMÉ

Silicon-carbon composites have been recognized as some of the most promising anode candidates for advancing new-generation lithium-ion batteries (LIBs). The development of high-efficiency silicon/graphene anodes through a simple and cost-effective preparation route is significant. Herein, by using micron silicon as raw material, we designed a mesoporous composite of silicon/alumina/reduced graphene oxide (Si/Al2O3/RGO) via a two-step ball milling combined annealing process. Commercial Al2O3 nanoparticles are introduced as an interlayer due to the toughening effect, while RGO nanosheets serve as a conductive and elastic coating to protect active submicron silicon particles during lithium alloying/dealloying reactions. Owing to the rational porous structure and dual protection strategy, the core/shell structured Si/Al2O3/RGO composite is efficient for Li+ storage and demonstrates improved electrical conductivity, accelerated charge transfer and electrolyte diffusion, and especially high structural stability upon charge/discharge cycling. As a consequence, Si/Al2O3/RGO yields a high discharge capacity of 852 mA h g-1 under a current density of 500 mA g-1 even after 200 cycles, exhibiting a high capacity retention of ∼85%. Besides, Si/Al2O3/RGO achieves excellent cycling reversibility and superb high-rate capability with a stable specific capacity of 405 mA h g-1 at 3000 mA g-1. Results demonstrate that the Al2O3 interlayer is synergistic with the indispensable RGO nanosheet shells, affording more buffer space for silicon cores to alleviate the mechanical expansion and thus stabilizing active silicon species during charge/discharge cycles. This work provides an alternative low-cost approach to achieving high-capacity silicon/carbon composites for high-performance LIBs.

19.
Nanomaterials (Basel) ; 14(7)2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38607101

RÉSUMÉ

Surface-enhanced Raman scattering (SERS), as one of the most powerful analytical methods, undertakes important inspection tasks in various fields. Generally, the performance of an SERS-active substrate relies heavily on its structure, which makes it difficult to integrate multiple-functional detectability on the same substrate. To address this problem, here we designed and constructed a film of graphene/Au nanoparticles (G/Au film) through a simple method, which can be conveniently transferred to different substrates to form various composite SERS substrates subsequently. By means of the combination of the electromagnetic enhancement mechanism (EM) and the chemical enhancement mechanism (CM) of this structure, the film realized good SERS performance experimentally, with the enhancement factor (EF) approaching ca. 1.40 × 105. In addition, the G/Au film had high mechanical strength and had large specific surface area and good biocompatibility that is beneficial for Raman detection. By further transferring the film to an Ag/Si composite substrate and PDMS flexible film, it showed enhanced sensitivity and in situ detectability, respectively, indicating high compatibility and promising prospect in Raman detection.

20.
Br J Clin Pharmacol ; 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38570184

RÉSUMÉ

AIMS: Isoniazid (INH) has been used as a first-line drug to treat tuberculosis (TB) for more than 50 years. However, large interindividual variability was found in its pharmacokinetics, and effects of nonadherence to INH treatment and corresponding remedy regime remain unclear. This study aimed to develop a population pharmacokinetic (PPK) model of INH in Chinese patients with TB to provide model-informed precision dosing and explore appropriate remedial dosing regimens for nonadherent patients. METHODS: In total, 1012 INH observations from 736 TB patients were included. A nonlinear mixed-effects modelling was used to analyse the PPK of INH. Using Monte Carlo simulations to determine optimal dosage regimens and design remedial dosing regimens. RESULTS: A 2-compartmental model, including first-order absorption and elimination with allometric scaling, was found to best describe the PK characteristics of INH. A mixture model was used to characterize dual rates of INH elimination. Estimates of apparent clearance in fast and slow eliminators were 28.0 and 11.2 L/h, respectively. The proportion of fast eliminators in the population was estimated to be 40.5%. Monte Carlo simulations determined optimal dosage regimens for slow and fast eliminators with different body weight. For remedial dosing regimens, the missed dose should be taken as soon as possible when the delay does not exceed 12 h, and an additional dose is not needed. delay for an INH dose exceeds 12 h, the patient only needs to take the next single dose normally. CONCLUSION: PPK modelling and simulation provide valid evidence on the precision dosing and remedial dosing regimen of INH.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...