Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Mikrochim Acta ; 191(8): 468, 2024 07 18.
Article de Anglais | MEDLINE | ID: mdl-39023836

RÉSUMÉ

A highly sensitive surface-enhanced Raman scattering (SERS) biosensor has been developed for the detection of microRNA-21 (miR-21) using an isothermal enzyme-free cascade amplification method involving catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR). The CHA reaction is triggered by the target miR-21, which causes hairpin DNA (C1 and C2) to self-assemble into CHA products. After AgNPs@Capture captures the resulting CHA product, the HCR reaction is started, forming long-stranded DNA on the surface of AgNPs. A strong SERS signal is generated due to the presence of a large amount of the Raman reporter methylene blue (MB) in the vicinity of the SERS "hot spot" on the surface of AgNPs. The monitoring of the SERS signal changes of MB allows for the highly sensitive and specific detection of miR-21. In optimal conditions, the biosensor exhibits a satisfactory linear range and a low detection limit for miR-21 of 42.3 fM. Additionally, this SERS biosensor shows outstanding selectivity and reproducibility. The application of this methodology to clinical blood samples allows for the differentiation of cancer patients from healthy controls. As a result, the CHA-HCR amplification strategy used in this SERS biosensor could be a useful tool for miRNA detection and early cancer screening.


Sujet(s)
Techniques de biocapteur , Limite de détection , Nanoparticules métalliques , microARN , Hybridation d'acides nucléiques , Analyse spectrale Raman , microARN/sang , microARN/analyse , Techniques de biocapteur/méthodes , Humains , Analyse spectrale Raman/méthodes , Nanoparticules métalliques/composition chimique , Argent/composition chimique , Techniques d'amplification d'acides nucléiques/méthodes , Bleu de méthylène/composition chimique , Catalyse
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123924, 2024 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-38262293

RÉSUMÉ

Determination of antiepileptic drugs and antipsychotics in human serum is significant in individualized drug administration and therapeutic drug monitoring (TDM). In this study, we developed a rapid label-free TDM method for the antiepileptic drug carbamazepine (CBZ) and the antipsychotic clozapine (CLO) in human serum. This detection strategy is based on the combination of surface-enhanced Raman scattering (SERS) and magnetic solid-phase extraction (MSPE). Initially, Fe3O4@SiO2@MIL-101(Fe) nanocomposites were synthesized by the layer-by-layer self-assembly method and characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, ultraviolet-visible, and Fourier transform infrared analyses. Subsequently, CBZ and CLO were detected in human serum using Fe3O4@SiO2@MIL-101(Fe) as the solid-phase extraction adsorbent and Ag nanoparticles as SERS substrates. The potential of the MSPE-SERS method for the label-free TDM of CBZ and CLO was then investigated. Fe3O4@SiO2@MIL-101(Fe) prevents magnetic particle aggregation and demonstrates rapid magnetic separation capability that simplifies the pretreatment process and reduces interference from complex matrices. Its large surface area can effectively enrich targets in complex matrices, thereby improving the SERS detection sensitivity. The linearity between CBZ and CLO was excellent over the concentration range of 0.1-100 µg/mL (calculated as the intensity of the SERS characteristic peaks of CBZ and CLO at 728 cm and 1054 cm-1, respectively), with correlation coefficients (R2) of 0.9987 and 0.9957, and detection limits of 0.072 and 0.12 µg/mL, respectively. The recoveries of CBZ with CLO ranged from 94.0 % to 105.0 %, and their relative standard deviations were <6.8 %. Compared to other assays, the developed MSPE-SERS method has the advantages of simple sample pretreatment, rapid detection, and good reproducibility, which provides a novel approach for the TDM of other drugs.


Sujet(s)
Neuroleptiques , Clozapine , Nanoparticules métalliques , Réseaux organométalliques , Humains , Analyse spectrale Raman , Silice/composition chimique , Reproductibilité des résultats , Surveillance des médicaments , Argent , Carbamazépine , Phénomènes magnétiques , Extraction en phase solide/méthodes , Limite de détection , Chromatographie en phase liquide à haute performance/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE