Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 72
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Chem Sci ; 13(18): 5268-5276, 2022 May 11.
Article de Anglais | MEDLINE | ID: mdl-35655554

RÉSUMÉ

More than four decades ago, a complex identified as the planar homoleptic lithium nickelate "Li3NiPh3(solv)3" was reported by Taube and co-workers. This and subsequent reports involving this complex have lain dormant since; however, the absence of an X-ray diffraction structure leaves questions as to the nature of the Ni-PhLi bonding and the coordination geometry at Ni. By systematically evaluating the reactivity of Ni(COD)2 with PhLi under different conditions, we have found that this classical molecule is instead a unique octanuclear complex, [{Li3(solv)2Ph3Ni}2(µ-η2:η2-C6H4)] (5). This is supported by X-ray crystallography and solution-state NMR studies. A theoretical bonding analysis from NBO, QTAIM, and ELI perspectives reveals extreme back-bonding to the bridging C6H4 ligand resulting in dimetallabicyclobutane character, the lack of a Ni-Ni bond, and pronounced σ-bonding between the phenyl carbanions and nickel, including a weak σC-Li → sNi interaction with the C-Li bond acting as a σ-donor. Employing PhNa led to the isolation of [Na2(solv)3Ph2NiCOD]2 (7) and [Na2(solv)3Ph2(NaC8H11)Ni(COD)]2 (8), which lack the benzyne-derived ligand. These findings provide new insights into the synthesis, structure, bonding and reactivity of heterobimetallic nickelates, whose prevalence in organonickel chemistry and catalysis is likely greater than previously believed.

2.
Angew Chem Int Ed Engl ; 61(8): e202116009, 2022 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-34913550

RÉSUMÉ

LiCH3 and LiCH2 CH3 react with the complex [Mo2 (H)2 (µ-AdDipp2 )2 (thf)2 ] (1⋅thf) with coordination of two molecules of LiCH2 R (R=H, CH3 ) and formation of complexes [Mo2 {µ-HLi(thf)CH2 R}2 (AdDipp2 )2 ], 5⋅LiCH3 and 5⋅LiCH2 CH3 , respectively (AdDipp2 =HC(NDipp)2 ; Dipp=2,6-i Pr2 C6 H3 ; thf=C4 H8 O). Due to steric hindrance, only one molecule of LiC6 H5 adds to 1⋅thf generating the complex [Mo2 (H){µ-HLi(thf)C6 H5 }(µ-AdDipp2 )2 ], (4⋅LiC6 H5 ). Computational studies disclose the existence of five-center six-electron bonding within the H-Mo≣Mo-C-Li metallacycles, with a mostly covalent H-Mo≣Mo-C group and predominantly ionic Li-C and Li-H interactions. However, the latter bonds exhibit non-negligible covalency, as indicated by X-ray, computational data and the large one-bond 6,7 Li,1 H and 6,7 Li,13 C NMR coupling constants found for the three-atom H-Li-C chains. By contrast, the phenyl group in 4⋅LiC6 H5 coordinates in an η2 fashion to the lithium atom through the ipso and one of the ortho carbon atoms.

3.
J Am Chem Soc ; 143(13): 5222-5230, 2021 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-33755447

RÉSUMÉ

The reactions of LiAlH4 as the source of LiH with complexes that contain (H)Mo≣Mo and (H)Mo≣Mo(H) cores stabilized by the coordination of bulky AdDipp2 ligands result in the respective coordination of one and two molecules of (thf)LiH, with the generation of complexes exhibiting one and two HLi(thf)H ligands extending across the Mo≣Mo bond (AdDipp2 = HC(NDipp)2; Dipp = 2,6-iPr2C6H3; thf = tetrahydrofuran, C4H8O). A theoretical study reveals the formation of Mo-H-Li three-center-two-electron bonds, supplemented by the coordination of the Mo≣Mo bond to the Li ion. Attempts to construct a [Mo2{HLi(thf)H}3(AdDipp2)] molecular architecture led to spontaneous trimerization and the formation of a chiral, hydride-rich Mo6Li9H18 supramolecular organization that is robust enough to withstand the substitution of lithium-solvating molecules of tetrahydrofuran by pyridine or 4-dimethylaminopyridine.

4.
Chemistry ; 27(21): 6569-6578, 2021 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-33469945

RÉSUMÉ

This contribution focuses on complex [Mo2 (H)2 (µ-AdDipp2 )2 ] (1) and tetrahydrofuran and pyridine adducts [Mo2 (H)2 (µ-AdDipp2 )2 (L)2 ] (1⋅thf and 1⋅py), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2 =HC(NDipp2 )2 ; Dipp=2,6-iPr2 C6 H3 ). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2 H2 unit of 1, with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3 , can bind to 1, causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond (2⋅PMe3 ). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo-H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2 , to afford a monohydride [Mo2 (µ-H)(µ-NTf2 )(µ-AdDipp2 )2 ] (4), with an O,O'-bridging triflimidate ligand.

5.
J Am Chem Soc ; 141(6): 2205-2210, 2019 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-30682245

RÉSUMÉ

C-H bond activation at cationic [(η5-C5Me5)Ir(PMe2Ar')] centers is described, where PMe2Ar' are the terphenyl phosphine ligands PMe2ArXyl2 and PMe2ArDipp2. Different pathways are defined for the conversion of the five-coordinate complexes [(η5-C5Me5)IrCl(PMe2Ar')]+, 2(Xyl)+ and 2(Dipp)+, into the corresponding pseudoallyls 3(Xyl)+ and 3(Dipp)+. In the absence of an external Brønsted base, electrophilic, remote ζ C-H activation takes place, for which the participation of dicationic species, [(η5-C5Me5)Ir(PMe2Ar')]2+, is proposed. When NEt3 is present, the PMe2ArDipp2 system is shown to proceed via 4(Dipp)+ as an intermediate en route to the thermodynamic, isomeric product 3(Dipp)+. This complex interconversion involves a non-innocent C5Me5 ligand, which participates in C-H and C-C bond formation and cleavage. Remarkably, the conversion of 4(Dipp)+ to 3(Dipp)+ also proceeds in the solid state.

6.
Chem Sci ; 10(37): 8541-8546, 2019 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-32110290

RÉSUMÉ

The first examples of stable metal complexes with coordinated ethylene and carbon dioxide ligands are reported. Reaction of tris(ethylene) complexes mer-M(C2H4)3(PNP) (M = Mo and W; PNP = 2,6-bis(diphenylphosphinomethyl)pyridine) with CO2 yields the corresponding, mixed cis-M(C2H4)2(CO2)(PNP) derivatives. X-ray studies reveal six-coordinate structures exhibiting η2-ethylene and κ2-C,O carbon dioxide coordination. Remarkably, the formation of the molybdenum CO2 adduct occurs also in the solid state at room temperature, under 4 bar of CO2, in a nearly quantitative manner.

7.
Chemistry ; 25(1): 260-272, 2019 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-30290026

RÉSUMÉ

The experimental and computational characterization of a series of dialkylterphenyl phosphines, PR2 Ar' is described. The new P-donors comprise five compounds of general formula PR2 Ar Dtbp 2 (R=Me, Et, iPr, c-C5 H9 and c-C6 H11 ); Ar Dtbp 2 = 2,6-C6 H3 -(3,5-C6 H3 -(CMe3 )2 )2 ), and another five PR2 Ar' phosphines containing the bulky alkyl groups iPr, c-C5 H9 or c-C6 H11 , in combination with Ar'=Ar Xyl 2 , Ar Xyl ' 2 , or Ar Ph 2 (L1-L10). Steric and electronic parameters have been determined computationally and from IR and X-ray data obtained for the phosphines and for some derivatives, including tricarbonyl and dicarbonyl nickel complexes, Ni(CO)3 (PR2 Ar') and Ni(CO)2 (PR2 Ar'). In the solid state, the free phosphines PR2 Ar' adopt one of the three possible structures formally related by rotation around the Cipso -P bond. Details on their relative energies and on the influence of the free phosphine structure on its coordination chemistry towards Ni(CO)n (n = 2, 3) fragments has been obtained by experimental and computational methods.


Sujet(s)
Complexes de coordination/synthèse chimique , Composés organométalliques/composition chimique , Phosphines/composition chimique , Complexes de coordination/composition chimique , Cristallographie aux rayons X , Conformation moléculaire , Spectrophotométrie IR
8.
Chem Commun (Camb) ; 54(66): 9186-9189, 2018 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-30062330

RÉSUMÉ

Complex [Mo2(H)2{µ-HC(NDipp)2}2(THF)2], (1·THF), reacts with C2H4 and PhCH[double bond, length as m-dash]CH2 to afford hydrido-hydrocarbyl and bis(hydrocarbyl) derivatives of the Mo[quadruple bond, length as m-dash]Mo bond. Reversible migratory insertion and ß-hydrogen elimination, as well as reductive elimination and other reactions, have been uncovered. PhC[triple bond, length as m-dash]CH behaves instead as a Brönsted-Lowry acid towards the strongly basic Mo-H bonds of 1·THF.

9.
Inorg Chem ; 57(1): 150-162, 2018 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-29231726

RÉSUMÉ

We report the synthesis and structural characterization of five-coordinate complexes of rhodium and iridium of the type [(η5-C5Me5)M(N^N)]+ (3-M+), where N^N represents the aminopyridinate ligand derived from 2-NH(Ph)-6-(Xyl)C5H3N (Xyl = 2,6-Me2C6H3). The two complexes were isolated as salts of the BArF anion (BArF = B[3,5-(CF3)2C6H3]4). The M-Namido bond of complexes 3-M+ readily activated CO, C2H4, and H2. Thus, compounds 3-M+ reacted with CO under ambient conditions, but whereas for 3-Rh+, CO migratory insertion was fast, yielding a carbamoyl carbonyl species, 4-Rh+, the stronger Ir-Namido bond of complex 3-Ir+ caused the reaction to stop at the CO coordination stage. In contrast, 3-Ir+ reacted reversibly with C2H4, forming adduct 5-Ir+, which subsequently rearranged irreversibly to [Ir](H)(═C(Me)N(Ph)-) complex 6-Ir+, which contains an N-stabilized carbene ligand. Computational studies supported a migratory insertion mechanism, giving first a ß-stabilized linear alkyl unit, [Ir]CH2CH2N(Ph)-, followed by a multistep rearrangement that led to the final product 6-Ir+. Both ß- and α-H eliminations, as well as their microscopic reverse migratory insertion reactions, were implicated in the alkyl-to-hydride-carbene reorganization. The analogous reaction of 3-Rh+ with C2H4 originated a complex mixture of products from which only a branched alkyl [Rh]C(H)(Me)N(Ph)- (5-Rh+) could be isolated, featuring a ß-agostic methyl interaction. Reactions of 3-M+ with H2 promoted a catalytic isomerization of the Ap ligand from classical κ2-N,N' binding to κ-N plus η3-pseudoallyl coordination mode.

10.
Angew Chem Int Ed Engl ; 56(10): 2772-2775, 2017 03 01.
Article de Anglais | MEDLINE | ID: mdl-28141907

RÉSUMÉ

Complex [PtMe2 (PMe2 ArDipp2 )] (1), which contains a tethered terphenyl phosphine (ArDipp2 =2,6-(2,6-i Pr2 C6 H3 )2 C6 H3 ), reacts with [H(Et2 O)2 ]BArF (BArF- =B[3,5-(CF3 )2 C6 H3 ]4- ) to give the solvent (S) complex [PtMe(S)(PMe2 ArDipp2 )]+ (2⋅S). Although the solvent molecule is easily displaced by a Lewis base (e.g., CO or C2 H4 ) to afford the corresponding adducts, treatment of 2⋅S with C2 H2 yielded instead the allyl complex [Pt(η3 -C3 H5 )(PMe2 ArDipp2 )]+ (6) via the alkyne intermediate [PtMe(η2 -C2 H2 )(PMe2 ArDipp2 )]+ (5). Deuteration experiments with C2 D2 , and kinetic and theoretical investigations demonstrated that the conversion of 5 into 6 involves a PtII -promoted HC≡CH to :C=CH2 tautomerization in preference over acetylene migratory insertion into the Pt-Me bond.

11.
Chemistry ; 23(1): 194-205, 2017 01 01.
Article de Anglais | MEDLINE | ID: mdl-27813171

RÉSUMÉ

We describe the synthesis and the molecular and electronic structures of the complex [Mo2 Me2 {µ-HC(NDipp)2 }2 ] (2; Dipp=2,6-iPr2 C6 H3 ), which contains a dimetallic core with an Mo-Mo quadruple bond and features uncommon four-coordinate geometry and has a fourteen-electron count for each molybdenum atom. The coordination polyhedron approaches a square pyramid, with one of the molybdenum atoms nearly co-planar with the basal square plane, in which the trans coordination position with respect to the Mo-Me bond is vacant. The other three sites are occupied by two trans nitrogen atoms of different amidinate ligands and the methyl group. The second Mo atom occupies the apex of the pyramid and forms an Mo-Mo bond of length 2.080(1) Å, consistent with a quadruple bond. Compound 2 reacts with tetrahydrofuran (THF) and trimethylphosphine to yield the mono-adducts [Mo2 Me(µ-Me){µ-HC(NDipp)2 }2 (L)] (3⋅THF and 3⋅PMe3 , respectively) with one terminal and one bridging methyl group. In contrast, 4-dimethylaminopyridine (dmap) forms the bis-adduct [Mo2 Me2 {µ-HC(NDipp)2 }2 (dmap)2 ] (4), with terminally coordinated methyl groups. Hydrogenolysis of complex 2 leads to the bis(hydride) [Mo2 H2 {µ-HC(NDipp)2 }2 (thf)2 ] (5⋅THF) with elimination of CH4 . Computational, kinetic, and mechanistic studies, which included the use of D2 and of complex 2 labelled with 13 C (99 %) at the Mo-CH3 sites, supported the intermediacy of a methyl-hydride reactive species. A computational DFT analysis of the terminal and bridging coordination of the methyl groups to the Mo≣Mo core is also reported.

12.
Chemistry ; 22(19): 6432-57, 2016 May 04.
Article de Anglais | MEDLINE | ID: mdl-26991740

RÉSUMÉ

Organometallic chemistry can be considered as a wide area of knowledge that combines concepts of classic organic chemistry, that is, based essentially on carbon, with molecular inorganic chemistry, especially with coordination compounds. Transition-metal methyl complexes probably represent the simplest and most fundamental way to view how these two major areas of chemistry combine and merge into novel species with intriguing features in terms of reactivity, structure, and bonding. Citing more than 500 bibliographic references, this review aims to offer a concise view of recent advances in the field of transition-metal complexes containing M-CH3 fragments. Taking into account the impressive amount of data that are continuously provided by organometallic chemists in this area, this review is mainly focused on results of the last five years. After a panoramic overview on M-CH3 compounds of Groups 3 to 11, which includes the most recent landmark findings in this area, two further sections are dedicated to methyl-bridged complexes and reactivity.

13.
Angew Chem Int Ed Engl ; 54(51): 15379-84, 2015 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-26555404

RÉSUMÉ

Reactions of the gold(I) triflimide complex [Au(NTf2 )(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)] (1) with the gold(I) hydrocarbyl species [AuR(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)] (2 a-2 c) enable the isolation of hydrocarbyl-bridged cationic digold complexes with the general composition [Au2 (µ-R)(PMe2 Ar${{^{{\rm Dipp}{_{2}}}}}$)2 ][NTf2 ], where Ar${{^{{\rm Dipp}{_{2}}}}}$=C6 H3 -2,6-(C6 H3 -2,6-iPr2 )2 and R=Me (3), CHCH2 (4), or CCH (5). Compound 3 is the first alkyl-bridged digold complex to be reported and features a symmetric [Au(µ-CH3 )Au](+) core. Complexes 4 and 5 are the first species of their kind that contain simple, unsubstituted vinyl and acetylide units, respectively. In the series of complexes 3-5, the bridging carbon atom systematically changes its hybridization from sp(3) to sp(2) and sp. Concomitant with this change, and owing to variations in the nature of the bonding within the [Au(µ-R)Au](+) unit, there is a gradual decrease in aurophilicity, that is, the strength of the Au⋅⋅⋅Au bonding interaction decreases. This change is illustrated by a monotonic increase in the Au-Au distance by approximately 0.3 Šfrom R=CH3 (2.71 Å) to CHCH2 (3.07 Å) and CCH (3.31 Å).

14.
Chem Commun (Camb) ; 51(95): 17008-11, 2015 Dec 11.
Article de Anglais | MEDLINE | ID: mdl-26447812

RÉSUMÉ

A novel terphenylphosphine PMe2Ar(Dipp2) () (Dipp = 2,6-(i)Pr2C6H3) forms stable Pt(0) complexes with ethene and 3,3-dimethylbut-1-ene that behave as sources of the reactive Pt(PMe2Ar(Dipp2)) fragment. The complexes are efficient catalysts for the selective hydrosilylation of terminal alkynes.

15.
J Am Chem Soc ; 137(38): 12378-87, 2015 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-26305709

RÉSUMÉ

New dimolybdenum complexes of composition [Mo2{µ-Me}2Li(S)}(µ-X)(µ-N^N)2] (3a-3c), where S = THF or Et2O and N^N represents a bidentate aminopyridinate or amidinate ligand that bridges the quadruply bonded molybdenum atoms, were prepared from the reaction of the appropriate [Mo2{µ-O2CMe}2(µ-N^N)2] precursors and LiMe. For complex 3a, X = MeCO2, while in 3b and 3c, X = Me. Solution NMR studies in C6D6 solvent support formulation of the complexes as contact ion pairs with weak agostic Mo-CH3···Li interactions, which were also evidenced by X-ray crystallography in the solid-state structures of the molecules of 3a and 3b. Samples of 3c enriched in (13)C (99%) at the metal-bonded methyl sites were also prepared and investigated by NMR spectroscopy employing C6D6 and THF-d8 solvents. Crystallization of 3c from toluene:tetrahydrofuran mixtures provided single crystals of the solvent separated ion pair complex [Li(THF)4] [Mo2(Me)2(µ-Me){µ-HC(NDipp)2}2] (4c), where Dipp stands for 2,6-iPr2C6H3. A computational analysis of the Mo2(µ-Me)2Li core of complexes 3a and 3b has been developed, which is consistent with a small but non-negligible electron-density sharing between the C and Li atoms of the mainly ionic CH3···Li interactions.

16.
Angew Chem Int Ed Engl ; 54(30): 8751-5, 2015 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-26095956

RÉSUMÉ

The stable cationic iridacyclopentenylidene [Tp(Me2)Ir(=CHC(Me)=C(Me)CH2(NCMe)]PF6 (A; Tp(Me2)=hydrotris(3,5-dimethylpyrazolyl)borate) has been obtained by α-hydride abstraction from the iridacyclopent-2-ene [Tp(Me2)Ir(CH2C(Me)=C(Me)CH2)(NCMe)]. Complex A exhibits Brønsted-Lowry acidity at the Ir-CH2 and proximal (relative to Ir-CH2 ) methyl sites. The coordination of an extra molecule of acetonitrile to the iridium center initiates the reversible isomerization of the chelating carbon chain of A to the monodentate butadienyl ligand of complex [Tp(Me2)Ir(CH=C(Me)C(Me)=CH2)(NCMe)2]PF6, which is capable to engage in a water-promoted C-C coupling with the MeCN co-ligands. The product is an aesthetically appealing bicyclic structure that resembles the hydrocarbon barrelene.

17.
Inorg Chem ; 54(13): 6573-81, 2015 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-26067207

RÉSUMÉ

Electrophilic, cationic Rh(III) complexes of composition [(η(5)-C5Me5)Rh(Ap)](+), (1(+)), were prepared by reaction of [(η(5)-C5Me5)RhCl2]2 and LiAp (Ap = aminopyridinate ligand) followed by chloride abstraction with NaBArF (BArF = B[3,5-(CF3)2C6H3]4). Reactions of cations 1(+) with different Lewis bases (e.g., NH3, 4-dimethylaminopyridine, or CNXyl) led in general to monoadducts 1·L(+) (L = Lewis base; Xyl = 2,6-Me2C6H3), but carbon monoxide provided carbonyl-carbamoyl complexes 1·(CO)2(+) as a result of metal coordination and formal insertion of CO into the Rh-Namido bond of complexes 1(+). Arguably, the most relevant observation reported in this study stemmed from the reactions of complexes 1(+) with H2. (1)H NMR analyses of the reactions demonstrated a H2-catalyzed isomerization of the aminopyridinate ligand in cations 1(+) from the ordinary κ(2)-N,N' coordination to a very uncommon, formally tridentate κ-N,η(3) pseudoallyl bonding mode (complexes 3(+)) following benzylic C-H activation within the xylyl substituent of the pyridinic ring of the aminopyridinate ligand. The isomerization entailed in addition H-H and N-H bond activation and mimicked previous findings with the analogous iridium complexes. However, in dissimilarity with iridium, rhodium complexes 1(+) reacted stoichiometrically at 20 °C with excess H2. The transformations resulted in the hydrogenation of the C5Me5 and Ap ligands with concurrent reduction to Rh(I) and yielded complexes [(η(4)-C5Me5H)Rh(η(6)-ApH)](+), (2(+)), in which the pyridinic xylyl substituent is η(6)-bonded to the rhodium(I) center. New compounds reported were characterized by microanalysis and NMR spectroscopy. Representative complexes were additionally investigated by X-ray crystallography.

18.
Chemistry ; 21(24): 8883-96, 2015 Jun 08.
Article de Anglais | MEDLINE | ID: mdl-25959723

RÉSUMÉ

This paper describes the formation of new platinacyclic complexes derived from the phosphine ligands PiPr2 Xyl, PMeXyl2 , and PMe2 Ar Xyl 2 (Xyl=2,6-Me2 C6 H3 and Ar Xyl 2=2,6-(2,6-Me2 C6 H3 )2 -C6 H3 ) as well as reactivity studies of the trans-[Pt(C^P)2 ] bis-metallacyclic complex 1 a derived from PiPr2 Xyl. Protonation of compound 1 a with [H(OEt2 )2 ][BArF ] (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ) forms a cationic δ-agostic structure 4 a, whereas α-hydride abstraction employing [Ph3 C][PF6 ] produces a cationic platinum carbene trans-[Pt{PiPr2 (2,6-CH(Me)C6 H3 }{PiPr2 (2,6-CH2 (Me)C6 H3 }][PF6 ] (8). Compounds 4 a and 8 react with H2 to yield the same 1:3 equilibrium mixture of 4 a and trans-[PtH(PiPr2 Xyl)2 ][BArF ] (6), in which one of the phosphine ligands participates in a δ-agostic interaction. DFT calculations reveal that H2 activation by 8 occurs at the highly electrophilic alkylidene terminus with no participation of the metal. The two compounds 4 a and 8 experience C-C coupling reactions of a different nature. Thus, 4 a gives rise to complex trans-[PtH{(E)-1,2-bis(2-(PiPr2 )-3-MeC6 H3 )CHCH}] (7) that contains a tridentate diphosphine-alkene ligand, through agostic CH oxidative cleavage and C-C reductive coupling steps, whereas the C-C coupling reaction in 8 involves classical migratory insertion of its [PtCH] and [PtCH2 ] bonds promoted by platinum coordination of CO or CNXyl. The mechanisms of the CC bond-forming reactions have also been investigated by computational methods.

19.
Chemistry ; 21(1): 410-21, 2015 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-25359541

RÉSUMÉ

To clarify the nature of the Mo-Carene interaction in terphenyl complexes with quadruple Mo-Mo bonds, ether adducts of composition [Mo2 (Ar')(I)(O2 CR)2 (OEt2)] have been prepared and characterized (Ar'=Ar(Xyl) 2 , R=Me; Ar'=ArMes2, R=Me; Ar'=Ar(Xyl2), R=CF3) (Mes=mesityl; Xyl=2,6-Me2 C6 H3, from now on xylyl) and their reactivity toward different neutral Lewis bases investigated. PMe3 , P(OMe)3 and PiPr3 were chosen as P-donors and the reactivity studies complemented with the use of the C-donors CNXyl and CN2 C2 Me4 (1,3,4,5-tetramethylimidazol-2-ylidene). New compounds of general formula [Mo2 (Ar')(I)(O2 CR)2 (L)] were obtained, except for the imidazol-2-ylidene ligand that yielded a salt-like compound of composition [Mo2 (Ar(Xyl2))(O2 CMe)2 (CN2 C2 Me4)2]I. The Mo-Carene interaction in these complexes has been analyzed with the aid of X-ray data and computational studies. This interaction compensates the coordinative and electronic unsaturation of one of the Mo atoms in the above complexes, but it seems to be weak in terms of sharing of electron density between the Mo and Carene atoms and appears to have no appreciable effect in the length of the Mo-Mo, Mo-X, and Mo-L bonds present in these molecules.

20.
Chemistry ; 21(6): 2576-87, 2015 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-25504864

RÉSUMÉ

This study focuses on a series of cationic complexes of iridium that contain aminopyridinate (Ap) ligands bound to an (η(5) -C5 Me5 )Ir(III) fragment. The new complexes have the chemical composition [Ir(Ap)(η(5) -C5 Me5 )](+) , exist in the form of two isomers (1(+) and 2(+) ) and were isolated as salts of the BArF (-) anion (BArF =B[3,5-(CF3 )2 C6 H3 ]4 ). Four Ap ligands that differ in the nature of their bulky aryl substituents at the amido nitrogen atom and pyridinic ring were employed. In the presence of H2 , the electrophilicity of the Ir(III) centre of these complexes allows for a reversible prototropic rearrangement that changes the nature and coordination mode of the aminopyridinate ligand between the well-known κ(2) -N,N'-bidentate binding in 1(+) and the unprecedented κ-N,η(3) -pseudo-allyl-coordination mode in isomers 2(+) through activation of a benzylic C-H bond and formal proton transfer to the amido nitrogen atom. Experimental and computational studies evidence that the overall rearrangement, which entails reversible formation and cleavage of H-H, C-H and N-H bonds, is catalysed by dihydrogen under homogeneous conditions.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...