Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Gamme d'année
1.
Discov Nano ; 18(1): 118, 2023 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-37733165

RÉSUMÉ

BACKGROUND: It is known that some sectors of hospitals have high bacteria and virus loads that can remain as aerosols in the air and represent a significant health threat for patients and mainly professionals that work in the place daily. Therefore, the need for a respirator able to improve the filtration barrier of N95 masks and even inactivating airborne virus and bacteria becomes apparent. Such a fact motivated the creation of a new N95 respirator which employs chitosan nanoparticles on its intermediate layer (SN95 + CNP). RESULTS: The average chitosan nanoparticle size obtained was 165.20 ± 35.00 nm, with a polydispersity index of 0.36 ± 0.03 and a zeta potential of 47.50 ± 1.70 mV. Mechanical tests demonstrate that the SN95 + CNP respirator is more resistant and meets the safety requisites of aerosol penetration, resistance to breath and flammability, presenting higher potential to filtrate microbial and viral particles when compared to conventional SN95 respirators. Furthermore, biological in vitro tests on bacteria, fungi and mammalian cell lines (HaCat, Vero E6 and CCL-81) corroborate the hypothesis that our SN95 + CNP respirator presents strong antimicrobial activity and is safe for human use. There was a reduction of 96.83% of the alphacoronavirus virus and 99% of H1N1 virus and MHV-3 betacoronavirus after 120 min of contact compared to the conventional respirator (SN95), demonstrating that SN95 + CNP have a relevant potential as personal protection equipment. CONCLUSIONS: Due to chitosan nanotechnology, our novel N95 respirator presents improved mechanical, antimicrobial and antiviral characteristics.

2.
Biomed Eng Online ; 21(1): 84, 2022 Dec 03.
Article de Anglais | MEDLINE | ID: mdl-36463207

RÉSUMÉ

BACKGROUND: The impact of the pandemic caused by the coronavirus (SARS-CoV-2), causing the disease COVID-19, has brought losses to the world in terms of deaths, economic and health problems. The expected return of the public to activities adapted to the new health situation led to discussions about the use of vaccination and its effects. However, the demand for proof of vaccination showed how inconsistent, unregistered, and uncontrolled this health process is with current technologies. Despite the proven effectiveness of vaccines in reducing infection rates, mortality, and morbidity, there are still doubts about their use in preventing certain infections and injuries, as well as the use of digital medical records for identification at public events and disease prevention. Therefore, this review aims to analyze the use of digital immunization cards in disease prevention in general. METHODS: A systematic review of Science, PubMed/MEDLINE, LILACS /BSV, CINALH, and IEEE and Xplore was performed using PRISMA guidelines. The authors summarized the studies conducted over the last decade on the impacts of prophylaxis by control through immunization cards. Studies were selected using the following terms: Vaccination; Mobile Applications; Health Smarts Cards; Immunization Programs; Vaccination Coverage. For data analysis, we used Mendeley, Excel, RStudio, and Bibliometrix software among others. RESULTS: A total of 1828 publications were found. After applying eligibility criteria (Articles published in Portuguese, Spanish or English in the last 10 years). Studies that only dealt with paper or physical records were excluded, as well as studies that were not linked to their country's health Department, as a possibility of bias exists with these types of information). After removing duplicates and applying filters 1 and 2, we included 18 studies in this review. This resulted in 18 papers that met our priori inclusion criteria; it was found that the most relevant sources were from the databases of the Institute of Electrical and Electronics Engineers (IEEE). CONCLUSIONS: Considering the selected studies, we found that scientific evidence and epidemiological surveillance are essential tools to characterize the efficiency and effectiveness of immunization passport protection intervention and to ethically justify them. Technological development of digital vaccine passports can assist in vaccination programs and positively impact disease prophylaxis.


Sujet(s)
COVID-19 , Vaccins , Humains , SARS-CoV-2 , COVID-19/prévention et contrôle , Pandémies , Chlorhexidine
3.
Materials (Basel) ; 13(23)2020 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-33276688

RÉSUMÉ

Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N'-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and -61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 µM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 µM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 µM towards VERO cells and of 1973.97 ± 5.98 µM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.

4.
J Diabetes Res ; 2018: 4641364, 2018.
Article de Anglais | MEDLINE | ID: mdl-29951552

RÉSUMÉ

The present study aims at evaluating the correlation between the free radical formation and the healing action of lower limbs' ulcers in a randomized controlled trial with the use of an adhesive derived from natural latex associated with a light-emitting diode (LED) circuit. The sample consists of 15 participants with lower limb lesions divided into three groups: group 1 case (5 participants) received the proposed dressing system adhesive of the natural latex associated with the LED circuit; group 2 control (5 participants) received the dressings at home performed by nurses according to and established by the clinic of wounds (treated with calcium alginate or silver foam); and group 3 (5 participants) also received the dressing in their homes with the use of the dressing adhesive derived from the natural latex associated with the LED circuit. The collected data were analyzed qualitatively and quantitatively by electron paramagnetic resonance for determination of free radical formation. Kruskal-Wallis statistical test was used to evaluate the effect of treatment on the lower limb's ulcer cicatrization process and its correlation with free radical. The results obtained corroborated the hypothesis about the reduction of the quantity of these molecules in the end of treatment related to the healing wound.


Sujet(s)
Bandages , Cicatrice/métabolisme , Pied diabétique/thérapie , Espèces réactives de l'oxygène/métabolisme , Cicatrisation de plaie/physiologie , Sujet âgé , Alginates , Cicatrice/anatomopathologie , Pied diabétique/métabolisme , Pied diabétique/anatomopathologie , Femelle , Acide glucuronique , Acides hexuroniques , Humains , Mâle , Adulte d'âge moyen , Résultat thérapeutique
5.
J Nanosci Nanotechnol ; 18(6): 3832-3843, 2018 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-29442716

RÉSUMÉ

In this study, we report the synthesis and characterization of a new rhodium(II) succinate complex (Rh2(suc)4) and its immobilization on lauric acid bilayer-coated maghemite nanoparticles (MGH-2L/Rh2(suc)4) and subsequent adsorption with bovine serum albumin (MGH-2L/Rh2(suc)4/BSA). Rh2(suc)4 has been characterized by elemental analysis, potentiometric titration, TGA, MS, FTIR and UV-Vis analysis. The maghemite phase was confirmed by XRD, and a diameter of 10 nm was obtained by Sherrer equation. The VSM experiment showed superparamagnetic properties. TEM showed nanoparticles with a spherical shape and a mean diameter of 8.5±0.4 and 9.1 ± 0.4 nm for MGH-2L/Rh2(suc)4 and MGH-2L/Rh2(suc)4/BSA, respectively. FTIR and TGA confirmed the immobilization of Rh2(suc)4 and bovine serum albumin adsorption on superparamagnetic iron oxide. Hydrodynamic size (DH) and zeta potential (ζ) measurements were made in aqueous, NaCl and DMEM media. DH for dispersions was lower in aqueous medium, but increased in saline and DMEM media. In aqueous and saline media, ζ was not altered for MGH-2L and MGH-2L/Rh2(suc)4, but was significantly lower for MGH-2L/Rh2(suc)4/BSA. Therefore, MGH-2L/Rh2(suc)4/BSA was the most stable dispersion, meaning that BSA coating prevents aggregation more than lauric acid bilayer coating. MGH-2L/Rh2(suc)4 and MGH-2L/Rh2(suc)4/BSA dispersions induced cytotoxicity in breast carcinoma (MCF-7) and fibroblast cells in culture, and this effect was higher than that exerted by free Rh2(suc)4 and more specific to breast carcinoma cells than to fibroblasts. Therefore, we suggest that these dispersions have an important potential for future clinical applications and, thus, they should be considered a platform to enhance Rh2(suc)4 cytotoxicity, specifically in breast carcinoma.


Sujet(s)
Tumeurs du sein/traitement médicamenteux , Acides lauriques , Nanoparticules métalliques , Rhodium , Acide succinique , Composés du fer III , Humains , Nanoparticules , Sérumalbumine bovine , Succinates , Cellules cancéreuses en culture
6.
Tumour Biol ; 36(5): 3325-36, 2015 May.
Article de Anglais | MEDLINE | ID: mdl-25528215

RÉSUMÉ

Breast cancer is one of the most prevalent cancer types among women. The use of magnetic fluids for specific delivery of drugs represents an attractive platform for chemotherapy. In our previous studies, it was demonstrated that maghemite nanoparticles coated with rhodium (II) citrate (Magh-Rh2Cit) induced in vitro cytotoxicity and in vivo antitumor activity, followed by intratumoral administration in breast carcinoma cells. In this study, our aim was to follow intravenous treatment to evaluate the systemic antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. Female Balb/c mice were evaluated with regard to toxicity of intravenous treatments through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine and liver, kidney, and lung histology. The antitumor activity of rhodium (II) citrate (Rh2Cit), Magh-Rh2Cit, and maghemite nanoparticles coated with citrate (Magh-Cit), used as control, was evaluated by tumor volume reduction, histology, and morphometric analysis. Magh-Rh2Cit and Magh-Cit promoted a significant decrease in tumor area, and no experimental groups presented hematotoxic effects or increased levels of serum ALT and creatinine. This observation was corroborated by the histopathological examination of the liver and kidney of mice. Furthermore, the presence of nanoparticles was verified in lung tissue with no morphological changes, supporting the idea that our nanoformulations did not induce toxicity effects. No studies about the systemic action of rhodium (II) citrate-loaded maghemite nanoparticles have been carried out, making this report a suitable starting point for exploring the therapeutic potential of these compounds in treating breast cancer.


Sujet(s)
Antinéoplasiques/pharmacologie , Composés du fer III/pharmacologie , Tumeurs expérimentales de la mamelle/traitement médicamenteux , Rhodium/pharmacologie , Alanine transaminase/sang , Animaux , Femelle , Composés du fer III/toxicité , Hépatocytes/anatomopathologie , Rein/physiopathologie , Glandes mammaires animales/anatomopathologie , Tumeurs expérimentales de la mamelle/mortalité , Tumeurs expérimentales de la mamelle/anatomopathologie , Souris , Souris de lignée BALB C , Nanoparticules , Rhodium/toxicité , Taux de survie
7.
J Nanobiotechnology ; 11: 4, 2013 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-23414068

RÉSUMÉ

BACKGROUND: Magnetic fluids containing superparamagnetic iron oxide nanoparticles represent an attractive platform as nanocarriers in chemotherapy. Recently, we developed a formulation of maghemite nanoparticles coated with rhodium (II) citrate, which resulted in in vitro cytotoxicity enhanced up to 4.6 times when compared to free rhodium (II) citrate formulation on breast carcinoma cells. In this work, we evaluate the antitumor activity and toxicity induced by these formulations in Balb/c mice bearing orthotopic 4T1 breast carcinoma. METHODS: Mice were evaluated with regard to the treatments' toxicity through analyses of hemogram, serum levels of alanine aminotransferase, iron, and creatinine; DNA fragmentation and cell cycle of bone marrow cells; and liver, kidney and lung histology. In addition, the antitumor activity of rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate was verified by tumor volume reduction, histology and immunohistochemistry. RESULTS: Regarding the treatments' toxicity, no experimental groups had alterations in levels of serum ALT or creatinine, and this suggestion was corroborated by the histopathologic examination of liver and kidney of mice. Moreover, DNA fragmentation frequency of bone marrow cells was lower than 15% in all experimental groups. On the other hand, the complexes rhodium (II) citrate-functionalized maghemite and free rhodium (II) citrate led to a marked growth inhibition of tumor and decrease in CD31 and Ki-67 staining. CONCLUSIONS: In summary, we demonstrated that both rhodium (II) citrate and maghemite nanoparticles coated with rhodium (II) citrate formulations exhibited antitumor effects against 4T1 metastatic breast cancer cell line following intratumoral administration. This antitumor effect was followed by inhibition of both cell proliferation and microvascularization and by tumor tissue injury characterized as necrosis and fibrosis. Remarkably, this is the first published report demonstrating the therapeutic efficacy of maghemite nanoparticles coated with rhodium (II) citrate. This treatment prolonged the survival period of treated mice without inducing apparent systemic toxicity, which strengthens its use for future breast cancer therapeutic applications.


Sujet(s)
Antinéoplasiques/pharmacologie , Composés du fer III/composition chimique , Nanoparticules de magnétite/composition chimique , Rhodium/pharmacologie , Alanine transaminase/sang , Animaux , Tumeurs du sein/traitement médicamenteux , Tumeurs du sein/anatomopathologie , Cycle cellulaire/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Prolifération cellulaire/effets des médicaments et des substances chimiques , Acide citrique/composition chimique , Acide citrique/pharmacologie , Créatinine/sang , Fragmentation de l'ADN/effets des médicaments et des substances chimiques , Femelle , Composés du fer III/analyse , Humains , Immunohistochimie , Fer/sang , Antigène KI-67/analyse , Rein/effets des médicaments et des substances chimiques , Rein/métabolisme , Foie/effets des médicaments et des substances chimiques , Foie/métabolisme , Souris , Souris de lignée BALB C , Antigènes CD31/analyse , Rhodium/composition chimique , Rayons ultraviolets
8.
Braz. arch. biol. technol ; Braz. arch. biol. technol;53(2): 343-352, Mar.-Apr. 2010. ilus
Article de Anglais | LILACS | ID: lil-546565

RÉSUMÉ

The aim of this work was to study the effect of curcumin on cell cycle in the human SK-MEL-37 melanoma cell line. In addition, morphological and structural analyses were also performed. Flow cytometric analysis showed a G0/G1 arrest at 5 µM after 24 h exposure and a concentration-dependent increase in the proportion of sub-G0 hypodiploid cells. Typical apoptotic events were also observed by the fluorescence microscopy, transmission and scanning electronic microscopy. Loss of mitochondrial membrane potential was not detected. Results suggested that curcumin could arrest human melanoma cells at G0/G1 phase and induce a mitochondrial-independent apoptotic pathway.


O melanoma é um tipo agressivo de câncer cujo tratamento culmina com o estabelecimento de resistência aos quimioterápicos empregados. Portanto, é importante o desenvolvimento de novos agentes farmacológicos que sejam menos tóxicos e que não provoquem quimiorresistência. As inúmeras propriedades terapêuticas da curcumina vêm sendo confirmadas através de estudos sobre o seu mecanismo de ação em células cultivadas. No presente estudo, empregamos células de melanoma humano da linhagem SK-MEL-37, que desenvolveram resistência in vitro à doxorubicina e cisplatina, drogas normalmente utilizadas na clínica. Investigamos o efeito da curcumina sobre o ciclo celular através de citometria de fluxo. Além disso, análises morfológicas e estruturais também foram realizadas. Os resultados demonstraram que o tratamento com uma concentração de 5 ?M de curcumina provocou uma parada na subfase G0/G1. Além disso, observou-se um aumento dose-dependente na proporção de células hipodiplóides em sub-G0. Eventos apoptóticos típicos foram observados por microscopia de fluorescência, microscopia eletrônica de transmissão e microscopia eletrônica de varredura. Não foi detectada alteração no potencial de membrana mitocondrial. Os resultados indicam que futuros estudos poderão tornar possível a utilização da curcumina como um modulador para agentes quimioterápicos empregados na clínica no tratamento do melanoma.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE