Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Autophagy Rep ; 2(1)2023.
Article de Anglais | MEDLINE | ID: mdl-37064813

RÉSUMÉ

Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.

2.
Mol Biochem Parasitol ; 184(2): 71-81, 2012 Aug.
Article de Anglais | MEDLINE | ID: mdl-22580100

RÉSUMÉ

The pyrimidine biosynthesis pathway in the protozoan pathogen Toxoplasma gondii is essential for parasite growth during infection. To investigate the properties of dihydroorotate dehydrogenase (TgDHOD), the fourth enzyme in the T. gondii pyrimidine pathway, we expressed and purified recombinant TgDHOD. TgDHOD exhibited a specific activity of 84U/mg, a k(cat) of 89s(-1), a K(m)=60µM for l-dihydroorotate, and a K(m)=29µM for decylubiquinone (Q(D)). Quinones lacking or having short isoprenoid side chains yielded lower k(cat)s than Q(D). As expected, fumarate was a poor electron acceptor for this family 2 DHOD. The IC(50)s determined for A77-1726, the active derivative of the human DHOD inhibitor leflunomide, and related compounds MD249 and MD209 were, 91µM, 96µM, and 60µM, respectively. The enzyme was not significantly affected by brequinar or TTFA, known inhibitors of human DHOD, or by atovaquone. DSM190, a known inhibitor of Plasmodium falciparum DHOD, was a poor inhibitor of TgDHOD. TgDHOD exhibits a lengthy 157-residue N-terminal extension, consistent with a potential organellar targeting signal. We constructed C-terminally c-myc tagged TgDHODs to examine subcellular localization of TgDHOD in transgenic parasites expressing the tagged protein. Using both exogenous and endogenous expression strategies, anti-myc fluorescence signal colocalized with antibodies against the mitochondrial marker ATPase. These findings demonstrate that TgDHOD is associated with the parasite's mitochondrion, revealing this organelle as the site of orotate production in T. gondii. The TgDHOD gene appears to be essential because while gene tagging was successful at the TgDHOD gene locus, attempts to delete the TgDHOD gene were not successful in the KU80 background. Collectively, our study suggests that TgDHOD is an excellent target for the development of anti-Toxoplasma drugs.


Sujet(s)
Mitochondries/enzymologie , Oxidoreductases acting on CH-CH group donors/composition chimique , Protéines de protozoaire/composition chimique , Pyrimidines/biosynthèse , Toxoplasma/enzymologie , Séquence d'acides aminés , Voies de biosynthèse , Clonage moléculaire , Séquence conservée , Dihydroorotate dehydrogenase , Antienzymes/composition chimique , Techniques de knock-out de gènes , Cinétique , Données de séquences moléculaires , Acide orotique/analogues et dérivés , Acide orotique/composition chimique , Oxydoréduction , Oxidoreductases acting on CH-CH group donors/antagonistes et inhibiteurs , Oxidoreductases acting on CH-CH group donors/génétique , Oxidoreductases acting on CH-CH group donors/métabolisme , Signaux de triage des protéines , Transport des protéines , Protéolyse , Protéines de protozoaire/antagonistes et inhibiteurs , Protéines de protozoaire/génétique , Protéines de protozoaire/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE