Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS One ; 13(7): e0200925, 2018.
Article de Anglais | MEDLINE | ID: mdl-30024931

RÉSUMÉ

Polynucleotide phosphorylase (PNPase) is an essential mitochondria-localized exoribonuclease implicated in multiple biological processes and human disorders. To reveal role(s) for PNPase in mitochondria, we established PNPase knockout (PKO) systems by first shifting culture conditions to enable cell growth with defective respiration. Interestingly, PKO established in mouse embryonic fibroblasts (MEFs) resulted in the loss of mitochondrial DNA (mtDNA). The transcriptional profile of PKO cells was similar to rho0 mtDNA deleted cells, with perturbations in cholesterol (FDR = 6.35 x 10-13), lipid (FDR = 3.21 x 10-11), and secondary alcohol (FDR = 1.04x10-12) metabolic pathway gene expression compared to wild type parental (TM6) MEFs. Transcriptome analysis indicates processes related to axonogenesis (FDR = 4.49 x 10-3), axon development (FDR = 4.74 x 10-3), and axonal guidance (FDR = 4.74 x 10-3) were overrepresented in PKO cells, consistent with previous studies detailing causative PNPase mutations in delayed myelination, hearing loss, encephalomyopathy, and chorioretinal defects in humans. Overrepresentation analysis revealed alterations in metabolic pathways in both PKO and rho0 cells. Therefore, we assessed the correlation of genes implicated in cell cycle progression and total metabolism and observed a strong positive correlation between PKO cells and rho0 MEFs compared to TM6 MEFs. We quantified the normalized biomass accumulation rate of PKO clones at 1.7% (SD ± 2.0%) and 2.4% (SD ± 1.6%) per hour, which was lower than TM6 cells at 3.3% (SD ± 3.5%) per hour. Furthermore, PKO in mouse inner ear hair cells caused progressive hearing loss that parallels human familial hearing loss previously linked to mutations in PNPase. Combined, our study reports that knockout of a mitochondrial nuclease results in mtDNA loss and suggests that mtDNA maintenance could provide a unifying connection for the large number of biological activities reported for PNPase.


Sujet(s)
Facteurs de transcription à motif basique hélice-boucle-hélice/physiologie , ADN mitochondrial/métabolisme , Régulation de l'expression des gènes , Perte d'audition/physiopathologie , Mitochondries/métabolisme , Polyribonucleotide nucleotidyltransferase/métabolisme , Animaux , Cycle cellulaire , ADN mitochondrial/génétique , Femelle , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Mitochondries/génétique , Mutation , Polyribonucleotide nucleotidyltransferase/génétique
2.
Cell Metab ; 23(5): 921-9, 2016 05 10.
Article de Anglais | MEDLINE | ID: mdl-27166949

RÉSUMÉ

mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells.


Sujet(s)
Lumière , Mammifères/métabolisme , Métabolome , Mitochondries/métabolisme , Nanoparticules/composition chimique , Température , Animaux , Séquence nucléotidique , Lignée cellulaire tumorale , Clones cellulaires , ADN mitochondrial/génétique , Métabolisme énergétique , Régulation de l'expression des gènes , Humains , Métabolome/génétique , Métabolomique , Reproductibilité des résultats
3.
Cell ; 159(7): 1681-97, 2014 Dec 18.
Article de Anglais | MEDLINE | ID: mdl-25525883

RÉSUMÉ

Reprogramming to iPSCs resets the epigenome of somatic cells, including the reversal of X chromosome inactivation. We sought to gain insight into the steps underlying the reprogramming process by examining the means by which reprogramming leads to X chromosome reactivation (XCR). Analyzing single cells in situ, we found that hallmarks of the inactive X (Xi) change sequentially, providing a direct readout of reprogramming progression. Several epigenetic changes on the Xi occur in the inverse order of developmental X inactivation, whereas others are uncoupled from this sequence. Among the latter, DNA methylation has an extraordinary long persistence on the Xi during reprogramming, and, like Xist expression, is erased only after pluripotency genes are activated. Mechanistically, XCR requires both DNA demethylation and Xist silencing, ensuring that only cells undergoing faithful reprogramming initiate XCR. Our study defines the epigenetic state of multiple sequential reprogramming intermediates and establishes a paradigm for studying cell fate transitions during reprogramming.


Sujet(s)
Reprogrammation cellulaire , Épigenèse génétique , Cellules souches pluripotentes induites/cytologie , Cellules souches pluripotentes induites/métabolisme , Chromosome X/métabolisme , Animaux , Protéines Cdh1/métabolisme , Méthylation de l'ADN , Protéines à homéodomaine/métabolisme , Souris , Protéine homéotique Nanog , ARN long non codant/métabolisme
4.
Cell Res ; 22(1): 178-93, 2012 Jan.
Article de Anglais | MEDLINE | ID: mdl-21844894

RÉSUMÉ

While it is clear that human pluripotent stem cells (hPSCs) can differentiate to generate a panoply of various cell types, it is unknown how closely in vitro development mirrors that which occurs in vivo. To determine whether human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) make equivalent progeny, and whether either makes cells that are analogous to tissue-derived cells, we performed comprehensive transcriptome profiling of purified PSC derivatives and their tissue-derived counterparts. Expression profiling demonstrated that hESCs and hiPSCs make nearly identical progeny for the neural, hepatic, and mesenchymal lineages, and an absence of re-expression from exogenous reprogramming factors in hiPSC progeny. However, when compared to a tissue-derived counterpart, the progeny of both hESCs and hiPSCs maintained expression of a subset of genes normally associated with early mammalian development, regardless of the type of cell generated. While pluripotent genes (OCT4, SOX2, REX1, and NANOG) appeared to be silenced immediately upon differentiation from hPSCs, genes normally unique to early embryos (LIN28A, LIN28B, DPPA4, and others) were not fully silenced in hPSC derivatives. These data and evidence from expression patterns in early human fetal tissue (3-16 weeks of development) suggest that the differentiated progeny of hPSCs are reflective of very early human development (< 6 weeks). These findings provide support for the idea that hPSCs can serve as useful in vitro models of early human development, but also raise important issues for disease modeling and the clinical application of hPSC derivatives.


Sujet(s)
Différenciation cellulaire , Cellules souches pluripotentes/cytologie , Lignage cellulaire , Reprogrammation cellulaire , Analyse de regroupements , Embryon de mammifère/cytologie , Embryon de mammifère/métabolisme , Développement embryonnaire , Fibroblastes/cytologie , Fibroblastes/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Extinction de l'expression des gènes , Feuillets embryonnaires/cytologie , Feuillets embryonnaires/embryologie , Feuillets embryonnaires/métabolisme , Hépatocytes/cytologie , Hépatocytes/métabolisme , Humains , Cellules souches neurales/cytologie , Cellules souches neurales/métabolisme , Facteur de transcription Oct-3/génétique , Facteur de transcription Oct-3/métabolisme , Cellules souches pluripotentes/métabolisme , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Facteurs de transcription SOX-B1/génétique , Facteurs de transcription SOX-B1/métabolisme , Transfection
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE