Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Gamme d'année
1.
Enzyme Microb Technol ; 169: 110281, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37390584

RÉSUMÉ

The generation of wastewater due to human activities are the main responsible for environmental problems. These problems are caused by the large amount of organic and inorganic pollutants related to the presence of pesticides, metals, pathogens, drugs and dyes. The photosynthetic treatment of effluents emerges as a sustainable and low-cost alternative for developing wastewater treatment systems based on a circular economy. Chemical compounds present in wastewater can be recovered and reused as a source of nutrients in microalgae cultivation to produce value-added bioproducts. The microalgal biomass produced in the cultivation with effluents has the potential to produce biochar. Biochar is carbon-rich charcoal that can be obtained by converting microalgae biomass through thermal decomposition of organic raw material under limited oxygen supply conditions. Pyrolysis, torrefaction, and hydrothermal carbonization are processes used for biochar synthesis. The application of microalgal biochar as an adsorbent material to remove several compounds present in effluents is an effective and fast treatment. This effectiveness is usually related to the unique physicochemical characteristics of the biochar, such as the presence of functional groups, ion exchange capacity, thermal stability, and high surface area, volume, and pore area. In addition, biochar can be reused in the adsorption process or applied in agriculture for soil correction. In this context, this review article describes the production, characterization, and use of microalgae biochar through a sustainable approach to wastewater treatment, emphasizing its potential in the circular economy. In addition, the article approaches the potential of microalgal biochar as an adsorbent material and its reuse after the adsorption of contaminants, as well as highlights the challenges and future perspectives on this topic.


Sujet(s)
Charbon de bois , Microalgues , Humains , Charbon de bois/composition chimique , Eaux usées , Carbone , Biomasse
2.
Int J Biol Macromol ; 231: 123193, 2023 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-36634805

RÉSUMÉ

The aim of this study was to investigate the influence of exogenous carbon supplementation and nitrogen source reduction on Chlorella fusca LEB 111 growth, biomass composition, and polyhydroxybutyrate accumulation. First, assays were performed with 50 % and 25 % reduced nitrogen source concentrations (NaNO3). In the second stage, the influence of culture supplementation with 10, 20, and 30 mg L-1 D-xylose, associated with 50 and 25 % reductions in NaNO3, was evaluated. The experiments conducted with a 25 % reduction in NaNO3 and supplementation with 10 mg L-1 D-xylose resulted in a positive effect on the biomass productivity of C. fusca LEB 111, with production as high as 354.4 mg L-1 d-1. The maximum concentration of PHB extracted from C. fusca LEB 111 was 3.7 % (w w-1) and was obtained when the microalgae were cultivated with a 25 % of reduction in NaNO3 and supplementation of D-xylose at 20 mg L-1. Therefore, this study brings new perspectives regarding reducing the use of nutritional sources and using exogenous carbon sources in using microalgae to produce molecules of high biotechnological potential.


Sujet(s)
Chlorella , Microalgues , Xylose , Biomasse , Dioxyde de carbone , Azote , Carbone
3.
Int J Biol Macromol ; 158: 875-883, 2020 May 05.
Article de Anglais | MEDLINE | ID: mdl-32387355

RÉSUMÉ

The aim of the current study was to evaluate the production of macromolecules such as polyhydroxybutyrate under pentose supplementation and reduced nitrogen levels in Chlamydomonas reinhardtii. Two batches of experiments were carried out: (1) reduction in the nitrogen (NH4Cl) concentration to 6 and 4 g L-1 and (2) supplementation of 10, 20 and 30 mg L-1 D-xylose together with a reduction in the NH4Cl concentration (6 and 4 g L-1). The addition of 20 mg L-1 D-xylose together with 6 g L-1 NH4Cl resulted in polyhydroxybutyrate production (206.0 mg L-1). The reduction of 8 to 6 g L-1 NH4Cl did not trigger a reduction in the production of either proteins (68.3% w w-1) or carbohydrates (23.3% w w-1) in the cells. The current study demonstrated that nutritional modifications, which until now have been unexplored in C. reinhardtii, triggered the production of macromolecules (polymers, carbohydrates and proteins) with high biotechnological potential.

4.
Braz. arch. biol. technol ; 61: e18161339, 2018. tab, graf
Article de Anglais | LILACS | ID: biblio-974103

RÉSUMÉ

ABSTRACT Spirulina is a microalgal genre that has the capacity to produce various bioproducts with applications in several areas including the energy sector. The study aimed to assess the ability of CO2 biofixation, biodiesel and other biocompounds production by Spirulina sp LEB 18 cultured in air-lift photobioreactor. The microalgae presented a rich macronutrient composition: protein (47.3%), carbohydrates (13.4%) and a high lipid content (32.7%) in a media with nitrogen reduction, CO2 using air-lift photobiorector. Furthermore, 160 mg.L.d-1 of CO2 was biofixed, generating a maximum biomass yield of 0.02 g.L.d-1. The lipids evaluated for biodiesel production presented a theoretical yield of 19.8% for in situ transesterification and 47.9% for conventional transesterification. The microalgal biomass has potential for producing biodiesel that can be applied instead or in mixture with traditional diesel fuel. The study of obtaining energy associated with the production of other high value-added biocompounds from the microalgal biomass is of high importance because in this way, the viability of biofuel production by this microorganism can be increased.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...