Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Hepatology ; 78(5): 1337-1351, 2023 11 01.
Article de Anglais | MEDLINE | ID: mdl-37021797

RÉSUMÉ

BACKGROUND AND AIMS: Paucity of intrahepatic bile ducts (BDs) is caused by various etiologies and often leads to cholestatic liver disease. For example, in patients with Alagille syndrome (ALGS), which is a genetic disease primarily caused by mutations in jagged 1 ( JAG1) , BD paucity often results in severe cholestasis and liver damage. However, no mechanism-based therapy exists to restore the biliary system in ALGS or other diseases associated with BD paucity. Based on previous genetic observations, we investigated whether postnatal knockdown of the glycosyltransferase gene protein O -glucosyltransferase 1 ( Poglut1) can improve the ALGS liver phenotypes in several mouse models generated by removing one copy of Jag1 in the germline with or without reducing the gene dosage of sex-determining region Y-box 9 in the liver. APPROACH AND RESULTS: Using an ASO established in this study, we show that reducing Poglut1 levels in postnatal livers of ALGS mouse models with moderate to profound biliary abnormalities can significantly improve BD development and biliary tree formation. Importantly, ASO injections prevent liver damage in these models without adverse effects. Furthermore, ASO-mediated Poglut1 knockdown improves biliary tree formation in a different mouse model with no Jag1 mutations. Cell-based signaling assays indicate that reducing POGLUT1 levels or mutating POGLUT1 modification sites on JAG1 increases JAG1 protein level and JAG1-mediated signaling, suggesting a likely mechanism for the observed in vivo rescue. CONCLUSIONS: Our preclinical studies establish ASO-mediated POGLUT1 knockdown as a potential therapeutic strategy for ALGS liver disease and possibly other diseases associated with BD paucity.


Sujet(s)
Syndrome d'Alagille , Glycosyltransferase , Foie , Oligonucléotides antisens , Animaux , Souris , Syndrome d'Alagille/génétique , Syndrome d'Alagille/métabolisme , Syndrome d'Alagille/anatomopathologie , Conduits biliaires intrahépatiques/métabolisme , Conduits biliaires intrahépatiques/anatomopathologie , Protéines de liaison au calcium/génétique , Cholestase/génétique , Cholestase/métabolisme , Extinction de l'expression des gènes , Glucosyltransferases/génétique , Glucosyltransferases/métabolisme , Glycosyltransferase/génétique , Glycosyltransferase/métabolisme , Protéines et peptides de signalisation intercellulaire/génétique , Protéine jagged-1/génétique , Protéine jagged-1/métabolisme , Foie/métabolisme , Foie/anatomopathologie , Protéines membranaires/génétique , Oligonucléotides antisens/génétique , Oligonucléotides antisens/métabolisme , Phénotype , Protéines serrate-jagged/génétique , Protéines serrate-jagged/métabolisme
2.
Nature ; 557(7704): 247-251, 2018 05.
Article de Anglais | MEDLINE | ID: mdl-29720662

RÉSUMÉ

Transdifferentiation is a complete and stable change in cell identity that serves as an alternative to stem-cell-mediated organ regeneration. In adult mammals, findings of transdifferentiation have been limited to the replenishment of cells lost from preexisting structures, in the presence of a fully developed scaffold and niche1. Here we show that transdifferentiation of hepatocytes in the mouse liver can build a structure that failed to form in development-the biliary system in a mouse model that mimics the hepatic phenotype of human Alagille syndrome (ALGS)2. In these mice, hepatocytes convert into mature cholangiocytes and form bile ducts that are effective in draining bile and persist after the cholestatic liver injury is reversed, consistent with transdifferentiation. These findings redefine hepatocyte plasticity, which appeared to be limited to metaplasia, that is, incomplete and transient biliary differentiation as an adaptation to cell injury, based on previous studies in mice with a fully developed biliary system3-6. In contrast to bile duct development7-9, we show that de novo bile duct formation by hepatocyte transdifferentiation is independent of NOTCH signalling. We identify TGFß signalling as the driver of this compensatory mechanism and show that it is active in some patients with ALGS. Furthermore, we show that TGFß signalling can be targeted to enhance the formation of the biliary system from hepatocytes, and that the transdifferentiation-inducing signals and remodelling capacity of the bile-duct-deficient liver can be harnessed with transplanted hepatocytes. Our results define the regenerative potential of mammalian transdifferentiation and reveal opportunities for the treatment of ALGS and other cholestatic liver diseases.


Sujet(s)
Voies biliaires/cytologie , Voies biliaires/métabolisme , Transdifférenciation cellulaire , Hépatocytes/cytologie , Facteur de croissance transformant bêta/métabolisme , Syndrome d'Alagille/anatomopathologie , Animaux , Conduits biliaires/cytologie , Conduits biliaires/métabolisme , Prolifération cellulaire , Cellules épithéliales/cytologie , Femelle , Humains , Mâle , Souris , Souris de lignée C57BL , Récepteurs Notch/métabolisme , Transduction du signal
3.
Dev Dyn ; 244(3): 497-506, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25370311

RÉSUMÉ

Background The liver is a complex organ with a variety of tissue components that require a precise architecture for optimal function of metabolic and detoxification processes. As a result of the delicate orchestration required between the various hepatic tissues, it is not surprising that impairment of hepatic function can be caused by a variety of factors leading to chronic liver disease. Results Despite the growing rate of chronic liver disease, there are currently few effective treatment options besides orthotopic liver transplantation. Better therapeutic options reside in the potential for genetic and cellular therapies that promote progenitor cell activation aiding de novo epithelial and vascular regeneration, cell replacement, or population of bioartificial hepatic devices. In order to explore this area of new therapeutic potential, it is crucial to understand the factors that promote hepatic function through regulating cell identities and tissue architecture. Conclusions In this commentary, we review the signals regulating liver cell fates during development and regeneration and highlight the importance of patterning the hepatic vascular systems to set the groundwork for the macro and micro hepatic architecture of the epithelium.


Sujet(s)
Régénération hépatique/physiologie , Foie/vascularisation , Foie/embryologie , Néovascularisation physiologique/physiologie , Animaux , Humains
4.
Am J Pathol ; 184(5): 1479-88, 2014 May.
Article de Anglais | MEDLINE | ID: mdl-24631193

RÉSUMÉ

The potential for intrahepatic bile duct (IHBD) regeneration in patients with bile duct insufficiency diseases is poorly understood. Notch signaling and Hnf6 have each been shown to be important for the morphogenesis of IHBDs in mice. One congenital pediatric liver disease characterized by reduced numbers of IHBDs, Alagille syndrome, is associated with mutations in Notch signaling components. Therefore, we investigated whether liver cell plasticity could contribute to IHBD regeneration in mice with disruptions in Notch signaling and Hnf6. We studied a mouse model of bile duct insufficiency with liver epithelial cell-specific deficiencies in Hnf6 and Rbpj, a mediator of canonical Notch signaling. Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice initially developed no peripheral bile ducts. The evolving postnatal liver phenotype was analyzed using IHBD resin casting, immunostaining, and serum chemistry. With age, Albumin-Cre Hnf6(flox/flox)Rbpj(flox/flox) mice mounted a ductular reaction extending through the hepatic tissue and then regenerated communicating peripheral IHBD branches. Rbpj and Hnf6 were determined to remain absent from biliary epithelial cells constituting the ductular reaction and the regenerated peripheral IHBDs. We report the expression of Sox9, a marker of biliary epithelial cells, in cells expressing hepatocyte markers. Tissue analysis indicates that reactive ductules did not arise directly from preexisting hilar IHBDs. We conclude that liver cell plasticity is competent for regeneration of IHBDs independent of Notch signaling via Rbpj and Hnf6.


Sujet(s)
Conduits biliaires intrahépatiques/physiologie , Facteur nucléaire hépatocytaire HNF-6/métabolisme , Facteur de transcription CBF-1/métabolisme , Récepteurs Notch/métabolisme , Régénération/physiologie , Animaux , Cellules épithéliales/métabolisme , Facteur nucléaire hépatocytaire HNF-6/déficit , Hépatocytes/métabolisme , Imagerie tridimensionnelle , Facteur de transcription CBF-1/déficit , Immunohistochimie , Kératine-19/métabolisme , Souris knockout , Lectines végétales/métabolisme , Veine porte/métabolisme , Facteur de transcription SOX-9/métabolisme
5.
Am J Physiol Gastrointest Liver Physiol ; 306(10): G849-62, 2014 May 15.
Article de Anglais | MEDLINE | ID: mdl-24650547

RÉSUMÉ

Vascular endothelial growth factor (VEGF) is crucial for vascular development in several organs. However, the specific contribution of epithelial-VEGF signaling in the liver has not been tested. We used a mouse model to specifically delete Vegf from the liver epithelial lineages during midgestational development and assessed the cell identities and architectures of epithelial and endothelial tissues. We find that without epithelial-derived VEGF, the zonal endothelial and hepatocyte cell identities are altered. We also find decreased portal vein and hepatic artery branching coincident with an increase in hepatic hypoxia postnatally. Together, these data indicate that VEGF secreted from the hepatic epithelium is required for normal differentiation of cells and establishment of three-dimensional vascular branching and zonal architectures in both epithelial and endothelial hepatic tissues.


Sujet(s)
Hépatocytes/métabolisme , Foie/embryologie , Facteur de croissance endothéliale vasculaire de type A/métabolisme , Animaux , Carbamoyl-phosphate synthase (ammonia)/biosynthèse , Différenciation cellulaire/effets des médicaments et des substances chimiques , Cellules endothéliales/métabolisme , Endothélium/métabolisme , Glutamate-ammonia ligase/biosynthèse , Hépatocytes/anatomopathologie , Hypoxie/anatomopathologie , Foie/vascularisation , Foie/physiopathologie , Souris , Souris knockout
6.
Dev Biol ; 364(1): 22-31, 2012 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-22285814

RÉSUMÉ

Mutations in ZIC3 result in X-linked heterotaxy in humans, a syndrome consisting of left-right (L-R) patterning defects, midline abnormalities, and cardiac malformations. Similarly, loss of function of Zic3 in mouse results in abnormal L-R patterning and cardiac development. However, Zic3 null mice also exhibit defects in gastrulation, neural tube closure, and axial patterning, suggesting the hypothesis that Zic3 is necessary for proper convergent extension (C-E) morphogenesis. To further investigate the role of Zic3 in early embryonic development, we utilized two model systems, Xenopus laevis and zebrafish, and performed loss of function analysis using antisense morpholino-mediated gene knockdown. Both Xenopus and zebrafish demonstrated significant impairment of C-E in Zic3 morphants. L-R patterning was also disrupted, indicating that the role of Zic3 in L-R axis development is conserved across species. Correlation of L-R patterning and C-E defects in Xenopus suggests that early C-E defects may underlie L-R patterning defects at later stages, since Zic3 morphants with moderate to severe C-E defects exhibited an increase in laterality defects. Taken together, these results demonstrate a functional conservation of Zic3 in L-R patterning and uncover a previously unrecognized role for Zic3 in C-E morphogenesis during early vertebrate development.


Sujet(s)
Plan d'organisation du corps , Gastrulation , Régulation de l'expression des gènes au cours du développement , Protéines à homéodomaine/métabolisme , Facteurs de transcription/métabolisme , Protéines de Xénope/métabolisme , Xenopus laevis/embryologie , Protéines de poisson-zèbre/métabolisme , Danio zébré/embryologie , Animaux , Animal génétiquement modifié , Embryon non mammalien/métabolisme , Femelle , Protéines à homéodomaine/génétique , Mâle , Facteurs de transcription/déficit , Facteurs de transcription/génétique , Protéines de Xénope/déficit , Xenopus laevis/génétique , Xenopus laevis/métabolisme , Danio zébré/génétique , Danio zébré/métabolisme , Protéines de poisson-zèbre/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE