Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 121
Filtrer
1.
PNAS Nexus ; 3(9): pgae336, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39238604

RÉSUMÉ

The sequencing of PCR amplicons is a core application of high-throughput sequencing technology. Using unique molecular identifiers (UMIs), individual amplified molecules can be sequenced to very high accuracy on an Illumina sequencer. However, Illumina sequencers have limited read length and are therefore restricted to sequencing amplicons shorter than 600 bp unless using inefficient synthetic long-read approaches. Native long-read sequencers from Pacific Biosciences and Oxford Nanopore Technologies can, using consensus read approaches, match or exceed Illumina quality while achieving much longer read lengths. Using a circularization-based concatemeric consensus sequencing approach (R2C2) paired with UMIs (R2C2 + UMI), we show that we can sequence an ∼550-nt antibody heavy chain (Immunoglobulin heavy chain - IGH) and an ∼1,500-nt 16S amplicons at accuracies up to and exceeding Q50 (<1 error in 100,000 sequenced bases), which exceeds accuracies of UMI-supported Illumina-paired sequencing as well as synthetic long-read approaches.

3.
Chest ; 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39094733

RÉSUMÉ

BACKGROUND: The coronary artery calcium score (CACS) and ratio of the pulmonary artery to aorta diameters (PA:A ratio) measured from chest CT scans have been established as predictors of cardiovascular events and COPD exacerbations, respectively. However, little is known about the reciprocal relationship between these predictors and outcomes. Furthermore, the prognostic implications of COPD subtypes on clinical outcomes remain insufficiently characterized. RESEARCH QUESTION: How can these two chest CT scan-derived parameters predict subsequent cardiovascular events and COPD exacerbations in different COPD subtypes? STUDY DESIGN AND METHODS: Using COPDGene study data, we assessed prospective cardiovascular disease (CVD) and COPD exacerbation risk in patients with COPD (Global Initiative for Chronic Obstructive Lung Disease spirometric grades 2-4), focusing on CACS and PA:A ratio at study enrollment, with logistic regression models. These outcomes were analyzed in three COPD subtypes: 1,042 patients with non-emphysema-predominant disease (NEPD) (low attenuation area at -950 Hounsfield units [LAA-950] < 5%), 1,324 patients with emphysema-predominant disease (EPD) (LAA-950 ≥ 10%), and 465 patients with intermediate emphysema disease (5% ≤ LAA-950 < 10%). RESULTS: Our study indicated significantly higher overall risk for cardiovascular events in patients with higher CACS (≥ median; OR, 1.61; 95% CI, 1.30-2.00) and increased COPD exacerbations in those with higher PA:A ratios (≥ 1; OR, 1.80; 95% CI, 1.46-2.23). Notably, patients with NEPD showed a stronger association between these indicators and clinical events than those with EPD (with CACS/CVD, NEPD vs EPD: OR, 2.02 vs 1.41; with PA:A ratio/COPD exacerbation, NEPD vs EPD: OR, 2.50 vs 1.65); the difference in ORs between COPD subtypes was statistically significant for CACS/CVD. INTERPRETATION: Two chest CT scan parameters, CACS and PA:A ratio, hold distinct predictive values for cardiovascular events and COPD exacerbations that are influenced by specific COPD subtypes. TRIAL REGISTRATION: ClinicalTrials.gov; No.: NCT00608764; URL: www. CLINICALTRIALS: gov.

4.
Article de Anglais | MEDLINE | ID: mdl-39200627

RÉSUMÉ

Rates of cannabis initiation among teenagers and young adults are increasing. Further, the use of various forms of cannabis (smoked or vaped) with nicotine (dual use) is increasingly common among young people. The health effects of dual use are lesser known, particularly in the context of high-potency cannabis products and across different routes of administration, which is ominous in terms of predicting future health outcomes. There is a long history of cannabis use being associated with decreased activity and increased snacking, both of which could portend an increased risk of metabolic and cardiovascular disease, particularly when these habits begin during formative years. However, modern forms of cannabis may not have these same effects. Here, we assess whether cannabis use alone and dual use of cannabis with nicotine impact dietary and exercise habits in young people. An anonymous, social media-based survey was designed based on the UC San Diego Inhalant Questionnaire and published diet and exercise questionnaires. A total of 457 surveys were completed. Young sole cannabis users represented 29% of responders, 16% were dual users of cannabis and nicotine, and 55% were non-users of either drug. Although the sole use of cannabis was not associated with dietary or activity differences relative to non-users, dual users of cannabis and nicotine reported higher consumption of unhealthy sugars. This novel finding of dual use being associated with increased sugar intake in young people raises concerns for an increased risk of metabolic syndrome and cardiovascular disease in this population.


Sujet(s)
Fumer de la marijuana , Humains , Adolescent , Femelle , Mâle , Jeune adulte , Fumer de la marijuana/épidémiologie , Adulte , Enquêtes et questionnaires , Sucres alimentaires , Exercice physique
5.
medRxiv ; 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-39040180

RÉSUMÉ

Rationale: Genome-wide association studies (GWAS) have identified multiple genetic loci associated with chronic obstructive pulmonary disease (COPD). When integrated with GWAS results, expression quantitative trait locus (eQTL) studies can provide insight into biological mechanisms involved in disease by identifying single nucleotide polymorphisms (SNPs) that contribute to whole gene expression. However, there are multiple genetically driven regulatory and isoform-specific effects which cannot be detected in traditional eQTL analyses. Here, we identify SNPs that are associated with alternative splicing (sQTL) in addition to eQTLs to identify novel functions for COPD associated genetic variants. Methods: We performed RNA sequencing on whole blood from 3743 subjects in the COPDGene Study. RNA sequencing data from lung tissue of 1241 subjects from the Lung Tissue Research Consortium (LTRC), and whole genome sequencing data on all subjects. Associations between all SNPs within 1000 kb of a gene (cis-) and splice and gene expression quantifications were tested using tensorQTL. In COPDGene a total of 11,869,333 SNPs were tested for association with 58,318 splice clusters, and 8,792,206 SNPs were tested for association with 70,094 splice clusters in LTRC. We assessed colocalization with COPD-associated SNPs from a published GWAS[1]. Results: After adjustment for multiple statistical testing, we identified 28,110 splice-sites corresponding to 3,889 unique genes that were significantly associated with genotype in COPDGene whole blood, and 58,258 splice-sites corresponding to 10,307 unique genes associated with genotype in LTRC lung tissue. We found 7,576 sQTL splice-sites corresponding to 2,110 sQTL genes were shared between whole blood and lung, while 20,534 sQTL splice-sites in 3,518 genes were unique to blood and 50,682 splice-sites in 9,677 genes were unique to lung. To determine what proportion of COPD-associated SNPs were associated with transcriptional splicing, we performed colocalization analysis between COPD GWAS and sQTL data, and found that 38 genomic windows, corresponding to 38 COPD GWAS loci had evidence of colocalization between QTLs and COPD. The top five colocalizations between COPD and lung sQTLs include NPNT , FBXO38 , HHIP , NTN4 and BTC . Conclusions: A total of 38 COPD GWAS loci contain evidence of sQTLs, suggesting that analysis of sQTLs in whole blood and lung tissue can provide novel insights into disease mechanisms.

6.
Article de Anglais | MEDLINE | ID: mdl-38935868

RÉSUMÉ

RATIONALE: While many studies have examined gene expression in lung tissue, the gene regulatory processes underlying emphysema are still not well understood. Finding efficient non-imaging screening methods and disease-modifying therapies has been challenging, but knowledge of the transcriptomic features of emphysema may help in this effort. OBJECTIVES: Our goals were to identify emphysema-associated biological pathways through transcriptomic analysis of bulk lung tissue, to determine the lung cell types in which these emphysema-associated pathways are altered, and to detect unique and overlapping transcriptomic signatures in blood and lung samples. METHODS: Using RNA-sequencing data from 446 samples in the Lung Tissue Research Consortium (LTRC) and 3,606 blood samples from the COPDGene study, we examined the transcriptomic features of chest computed tomography-quantified emphysema. We also leveraged publicly available lung single-cell RNA-sequencing data to identify cell types showing COPD-associated differential expression of the emphysema pathways found in the bulk analyses. MEASUREMENTS AND MAIN RESULTS: In the bulk lung RNA-seq analysis, 1,087 differentially expressed genes and 34 dysregulated pathways were significantly associated with emphysema. We observed alternative splicing of several genes and increased activity in pluripotency and cell barrier function pathways. Lung tissue and blood samples shared differentially expressed genes and biological pathways. Multiple lung cell types displayed dysregulation of epithelial barrier function pathways, and distinct pathway activities were observed among various macrophage subpopulations. CONCLUSIONS: This study identified emphysema-related changes in gene expression and alternative splicing, cell-type specific dysregulated pathways, and instances of shared pathway dysregulation between blood and lung.

7.
bioRxiv ; 2024 May 23.
Article de Anglais | MEDLINE | ID: mdl-38826450

RÉSUMÉ

Fibrosis drives end-organ damage in many diseases. However, clinical trials targeting individual upstream activators of fibroblasts, such as TGFß, have largely failed. Here, we target the leukemia inhibitory factor receptor (LIFR) as a "master amplifier" of multiple upstream activators of lung fibroblasts. In idiopathic pulmonary fibrosis (IPF), the most common fibrotic lung disease, we found that lung myofibroblasts had high LIF expression. Further, TGFß1, one of the key drivers of fibrosis, upregulated LIF expression in IPF fibroblasts. In vitro anti-LIFR antibody blocking on human IPF lung fibroblasts reduced induction of profibrotic genes downstream of TGFß1, IL-4 and IL-13. Further, siRNA silencing of LIFR in IPF precision cut lung slices reduced expression of fibrotic proteins. Together, we find that LIFR drives an autocrine positive feedback loop that amplifies and sustains pathogenic activation of IPF fibroblasts downstream of multiple external stimuli, implicating LIFR as a therapeutic target in fibrosis. Significance Statement: Fibroblasts have a central role in the pathogenesis of fibrotic diseases. However, due to in part to multiple profibrotic stimuli, targeting a single activator of fibroblasts, like TGFß, has not yielded successful clinical treatments. We hypothesized that a more effective therapeutic strategy is identifying a downstream "master amplifier" of a range of upstream profibrotic stimuli. This study identifies the leukemia inhibitory factor receptor (LIFR) on fibrotic lung fibroblasts amplifies multiple profibrotic stimuli, such as IL-13 and TGFß. Blocking LIFR reduced fibrosis in ex vivo lung tissue from patients with idiopathic pulmonary fibrosis (IPF). LIFR, acting as a master amplifier downstream of fibroblast activation, offers an alternative therapeutic strategy for fibrotic diseases.

8.
medRxiv ; 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38826461

RÉSUMÉ

Rationale: Genetic variants and gene expression predict risk of chronic obstructive pulmonary disease (COPD), but their effect on COPD heterogeneity is unclear. Objectives: Define high-risk COPD subtypes using both genetics (polygenic risk score, PRS) and blood gene expression (transcriptional risk score, TRS) and assess differences in clinical and molecular characteristics. Methods: We defined high-risk groups based on PRS and TRS quantiles by maximizing differences in protein biomarkers in a COPDGene training set and identified these groups in COPDGene and ECLIPSE test sets. We tested multivariable associations of subgroups with clinical outcomes and compared protein-protein interaction networks and drug repurposing analyses between high-risk groups. Measurements and Main Results: We examined two high-risk omics-defined groups in non-overlapping test sets (n=1,133 NHW COPDGene, n=299 African American (AA) COPDGene, n=468 ECLIPSE). We defined "High activity" (low PRS/high TRS) and "severe risk" (high PRS/high TRS) subgroups. Participants in both subgroups had lower body-mass index (BMI), lower lung function, and alterations in metabolic, growth, and immune signaling processes compared to a low-risk (low PRS, low TRS) reference subgroup. "High activity" but not "severe risk" participants had greater prospective FEV 1 decline (COPDGene: -51 mL/year; ECLIPSE: - 40 mL/year) and their proteomic profiles were enriched in gene sets perturbed by treatment with 5-lipoxygenase inhibitors and angiotensin-converting enzyme (ACE) inhibitors. Conclusions: Concomitant use of polygenic and transcriptional risk scores identified clinical and molecular heterogeneity amongst high-risk individuals. Proteomic and drug repurposing analysis identified subtype-specific enrichment for therapies and suggest prior drug repurposing failures may be explained by patient selection.

9.
Heliyon ; 10(10): e31301, 2024 May 30.
Article de Anglais | MEDLINE | ID: mdl-38807864

RÉSUMÉ

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous, chronic inflammatory process of the lungs and, like other complex diseases, is caused by both genetic and environmental factors. Detailed understanding of the molecular mechanisms of complex diseases requires the study of the interplay among different biomolecular layers, and thus the integration of different omics data types. In this study, we investigated COPD-associated molecular mechanisms through a correlation-based network integration of lung tissue RNA-seq and DNA methylation data of COPD cases (n = 446) and controls (n = 346) derived from the Lung Tissue Research Consortium. First, we performed a SWIM-network based analysis to build separate correlation networks for RNA-seq and DNA methylation data for our case-control study population. Then, we developed a method to integrate the results into a coupled network of differentially expressed and differentially methylated genes to investigate their relationships across both molecular layers. The functional enrichment analysis of the nodes of the coupled network revealed a strikingly significant enrichment in Immune System components, both innate and adaptive, as well as immune-system component communication (interleukin and cytokine-cytokine signaling). Our analysis allowed us to reveal novel putative COPD-associated genes and to analyze their relationships, both at the transcriptomics and epigenomics levels, thus contributing to an improved understanding of COPD pathogenesis.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE