Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Opt Express ; 29(15): 23439-23446, 2021 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-34614609

RÉSUMÉ

In this paper, we present a novel mechanism for the generation of laser pulses based on the phenomenon of thermocavitation. Thermocavitation bubbles were generated within a glass cuvette filled with copper nitrate dissolved in water, where the tip of an optical fiber was placed very close to the bubble generation region. Once the bubble is generated, it expands rapidly and the incoming laser light transmitted through the optical fiber is reflected at the vapor-solution interface and reflected back into the fiber, which is coupled to an erbium-doped fiber ring laser. Laser pulses were extracted from the ring cavity and detected by a fast photodetector, which corresponds to a single thermocavitation event, obtaining a pulse repetition rate from 118 Hz to 2 kHz at 1560 nm, with a pulse width ranging from 64 to 57 µs. The repetition rate can be controlled by adjusting the laser power to induce thermocavitation. To our knowledge, this novel mechanism of laser pulses has not been reported in the literature.

2.
Appl Opt ; 59(13): D131-D137, 2020 May 01.
Article de Anglais | MEDLINE | ID: mdl-32400635

RÉSUMÉ

This paper presents the development of a biosensor based on optical fiber, using a polyclonal antibody kisspeptin receptor as a biological recognition element that is connected to puberty onset and may also help to suppress metastasis in melanoma breast cancer. The fiber surface was chemically prepared to immobilize the antibody. The structural homogeneity of the biosensor, at each stage of the self-assembly, was characterized by Fourier transform infrared spectroscopy and by measurements of the transmission at the output of the biosensor. The morphological homogeneity analysis was performed by optical microscopy and scanning electron microscopy. The biosensor developed was checked to detect kisspeptin in brain tissues by spectral transmission using a superluminescent diode. The data were analyzed using principal component analysis. The interaction of the kisspeptin with its counterpart by means of the evolution of the transmission spectrum as a function of time was observed.


Sujet(s)
Kisspeptines/analyse , Fibres optiques , Spectroscopie infrarouge à transformée de Fourier/instrumentation , Spectroscopie infrarouge à transformée de Fourier/méthodes , Anticorps/composition chimique , Techniques de biocapteur , Encéphale , Humains , Protéines immobilisées/composition chimique , Limite de détection , Microscopie , Analyse en composantes principales , Silice/composition chimique
3.
Opt Express ; 28(4): 4928-4937, 2020 Feb 17.
Article de Anglais | MEDLINE | ID: mdl-32121723

RÉSUMÉ

Numerical simulations using the Finite-Difference Time-Domain method were used to study the propagation of an acoustic wave within a truncated ellipsoidal cavity. Based in our simulations, a fluidic device was designed and fabricated using a 3D printer in order to focus an acoustic wave more efficiently and expel a liquid jet. The device consists of an ellipsoidal shaped chamber filled with a highly absorbent solution at the operating wavelength (1064 nm) in order to create a vapor bubble using a continuous wavelength laser. The bubble rapidly expands and collapses emitting an acoustic wave that propagates inside the cavity, which was measured by using a needle hydrophone. The bubble collapse, and source of the acoustic wave, occurs in one focus of the cavity and the acoustic wave is focused on the other one, expelling a liquid jet to the exterior. The physical mechanism of the liquid jet generation is momentum transfer from the acoustic wave, which is strongly focused due to the geometry of the cavity. This mechanism is different to the methods that uses pulsed lasers for the same purpose. The maximum speed of the generated liquid microjets was approximately 20 m/s. One potential application of this fluidic device can be found for inkjet printing, coating and, maybe the most attractive, for drug delivery.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...